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FOREWORD

This report documents the work performed at the Dynamic Science
Division of Marshall Industries under NASA Contract NAS 7-442 relating
to theoretical prediction of liquid rocket combustion instability. All phases
of this contract were monitored by Charles E. Feiler and Richard J. Priem,
both of the Chemistry and Energy Conversion Division, NASA Lewis
Research Center,
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SUMMARY

An extension of the Priem~-Guentert nonlinear annular combustion insta-
bility model for liquid rocket engines is presented. Additions to the model
include: droplet drag effects, propellant spray distributions, and independent
heat and mass addition due to a bipropellant system. Results of parametric
computer studies are presented which show the effect of these additions to
the model on stability limits.

The addition of droplet drag to the transport equations produces a new
dimensionless term, .#, the drag parameter. Computer results show that
droplet drag can produce large attenuations in sensitivity to combustion
instability.

Drop sprays are treated by defining a spray distribution function for both
the fuel and oxidizer spray entering an annulus. Results of a parametric
study of the influence of mean drop size and of standard deviation are presented
for the spray distribution model.

In a bipropellant system the amount of heat and mass added to the gas
phase, as a result of a disturbance wave, are not proportional. The instability
equations were modified to independently calculate mass and heat addition
for each propellant and these modifications were included in the computer solu-
tion. Generally, the independent addition of mass to the flow produced trends
similar to the simultaneous addition of heat and mass. For comparison, a
complete engine stability map was generated using both the bipropellant model
and the monopropellant model. Significant differences are apparent in the
predicted sensitivity to instability.

As a result of these extensions to the instability model, additional dimen-
sionless parameters are required to characterize an annulus. It is therefore
difficult to show the interrelationship of these parameters through the use of
stability limit plots. A particular combustor, however, may be analyzed for
sensitivity towards instability with the computer solution developed under
this contract.
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INTRODUCTION

Prediction of combustion instability In liquid rocket engines suffers
from the extreme complexity of the combustion and gasdynamic processes
involved. A realistic determination of an engine's sensitivity to becoming
unstable, as a result of a random disturbance, requires a detalled knowledge
of the following processes:

(1) The atomization process
(2) The two-phase flow process during steady-state engine

operation including: droplet heatup, droplet drag, droplet
shattering and droplet vaporization

(3) The kinetic processes including: combustion of the vaporized
gases from the droplet spray, and nonequilibrium gasdynamics
of the bumed gases.

(4) The unsteady response of each of the above processes to a
random gasdynamic disturbance or atomization nonuniformity

(5) The effect of the unsteady responses of each process on all
other processes, both steady and unsteady.

In addition, the geometry of a real rocket engine combustor and the nature
of the random disturbance wave make the problem three dimensional.

Various simplified theoretical models have been developed, as dis-
cussed in Reference 1. Basically, each model assumes that one of the above
processes controls the combustion response to a8 disturbance wave and does
not interact with other processes. In this way, the problem is reduced to
examining the response of a single process independently as an instability
wave driving force, The arguments against decoupling the combustion -
gasdynamic processes in this way are valid, since it has been shown that
many of the processes do strongly interact; however, more rigorous models
will have to evolve from the simpler ones due to the complexity of the pro-
blem.

This report extends a nonlinear liquid rocket combustion instability
model originally developed by Priem (Ref. 1). The basic model assumes that ‘
droplet vaporization is the controlling process and that the response of a |
vaporizing propellant drop due to a gasdynamic disturbance wave can be
related to a steady-state droplet vaporization correlation. The additional
phenomenon included in this study are:



(1) Momentum and energy transfer due to droplet drag
(2) Propellant droplet spray distributions

(3) Independent heat and mass addition consistent with a
bipropellant system.

Derivations of the equations describing the extended instability model are
presented In Appendices,A,B,and C. A knowledge of Priem's nonlinear com~
bustion instability model will be assumed in this report, and therefore a
complete derivation of the model will not be given.

Based on the extended model, stability limits have been generated
as a function of similarity parameters that appear when the instability equa-
tions are nondimensionalized. Numerical integrations of the transport
equations were accomplished with a computer program described in a previous
report, (Ref. 2). Modifications to the computer program needed for the current
extended model are included in this report as Appendix D.

SYMBOLS AND UNITS

cross-sectional area of combustor, sq in.

A

AC initial amplitude of pressure disturbance, dimensionless

Af nozzle-throat area of combustor, sqg in.

A combustor contraction ratio, Ac/At' dimensionless

a speed of sound in gases, in./sec

Cd concentration of liquid drops, drops/cu in.

CD coefficient of drag, dimenslonless

5 specific heat at constant pressure, Btu/(lb)(°F)

c, specific heat at constant volume, Btu/(lb)CF)

c* characteristic exhaust velocity, ft/sec

D molecular diffusion coefficient, sq in./sec

B drag parameter = 3/8 CD & ran/rd' dimensionless
yxtl

fly) function of gamma, \ 2 j}hl

, y+1
F drag force exerted by the gas on the droplets, lbg/in
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pz/pd, dimensionless

acceleration due to gravity, 386.09 in.sec®

mechanical equivalent of heat, 9339.1 in.-1b/Btu

viscous-dissipation parameter, uoc*/ranl—)cg' dimensionless
burning-rate parameter, ranm/‘ﬂ ,dimensionless

molecular weight of gas, lb mass/lb mole

molecular weight of liquid, 1b mass/lb mole

burning rate of propellant fraction/in.

vapor phase oxidant-fuel ratio

pressure, 1b/sq in.

vapor pressure of liquid, 1b/sq in.

rate of heat transferred by conduction, Btu/(sec)(sq in.)

universal gas constant, 19,510 (in.)(lb force)/(°R)(lb mole)

2 Ty poao/po, dimensionless

radial distance, in.

mass-mean drop radius, in.

number mean drop radius, in.

Schmidt number, uo/Dpo, dimensionless

gas temperature, °R

time, sec

internal energy, Btu/lb

gas velocity, In./sec

velocity difference between gases and drops in axlial direction in./sec
liquid velocity, in./sec

propellant flow rate, lbm/sec

correction factor for mass transfer, (P/Pv)ln [P/(P—PV)], dimensionless
specific-heat ratio c /Cv' dimensionless

operator, (in.)_1

thermal conductivity of gases, Btu/(in.)(sec)(°F)
gas viscosity, 1b/(in.)(sec)



o} gas denslity, lbm/cu in.

$ local instantaneous value of &/F
m
d density,
pd rop density, ( cu in. of drop vol. )
[ liquid density, (lbm of liquid/cu in. of two phase mixture)
T stress tensor lbf/(in.)(secz)
w local instantaneous vaporization rate for various combustion

models, 1bm/(sec) (cu in.)

O‘G geometric standard deviation, dimensionless
Subscripts:
an annulus

combustion chamber
d drop
f fuel

max maximum

min minimum

o steady state
ox oxldizer

s stoichiometric
t total
Superscripts:

! reduced parameter, defined in Equation (A4)

- average




THEORY
Basic Nonlinear Combustion Instability Model

Transport equations describing unsteady combustion in a liquid rocket
motor were derived in Reference 1, and are similar to those given in Appendix A
of this report, excluding the droplet drag terms. Although the equations have
been derived in general form, numerical solution of the model has been restricted
to the one-dimensional case of an annular combustor. The length and width
of the annulus are assumed to be small thereby restricting the instability wave
to travel in the tangential direction around the annulus. As was the case in
Reference 1, it was desired that the numerical solution of this one~dimensional
model would indicate the importance of the various engine parameters and

similarity groups on stability rather than provide specific quantitative informa-
tion.

Nondimensionalizing of the unsteady transport equations leads to
groups of parameters containing only steady-state terms. These groups, after
some further simplification, can be used to characterize the stability of an
annular ring within a combustor. In this way, an engine may be investigated
for its sensitivity towards tangential combustion instability by determining
the steady-state parameters that characterize a series of annuli, and then
solving the instability equations with these parameters as known quantities for
an assumed random disturbance amplitude. The disturbance form used through-
out this study is P'=1+Apsin 8'

Basic to the model is the assumption of instantaneous burning upon vapori-
zation of the propellant. It is assumed that the rate of vaporization of a liquid
drop varies with the amplitude of the disturbance wave and that the vaporization
rate can be related to the gasdynamics of the flow through the Reynolds number
of the drop. A steady-state vaporization correlation, derived in Reference 3,
is used to determine the vaporization rate under transient conditions for this
model. The implication is that the droplet surface temperature responds instantly
to the fluctuation in external gas flow but a negligible amount of heat is used to
raise the temperature of the drop, and that therefore a steady-state correlation is
valid. The propellant vaporization rate is given by:

-+
G,D M,S_ ¢ . /3 v//,z:-d!v—vzlp_\_zl/z,
W= P 2+ .6 SC \_———-— :

2RT T4 \

(1)

P

If the vapor pressure does not vary with time, the vaporization response
can be written as



172 (2)

Priem, Reference 1, simplifies this expression by assuming large velocity
differences between the droplets.and the combustion gases, obtaining

1/2 | v -v 172
=(2) ( sl \ (3)
% 15,0

or, for the one-dimensional annular model, allowing only constant axial
liquid drop velocities, the vaporization response reduces to

' 3
w0 [1e 62y 1" =

In the current model the velocity differences are not assumed large, and the
full expression for w' is used. A direct substitution of

2r p a
Re, = —2-2 (4)
Ko

in equation (2) yields

-+
2+.6 Sl/sp‘l/zl v'—v'|1/2 Re 172
w: c 1/ d (Sa)
-
2+.68 33 —gr (V2 172
C o) 4,0 d

or, for the one-dimensional annular model,

2 +.6 801/3 p’l/zl (v'9)2+ )3 1/4Red1/2
w' = (S50)
2+ .6 Scl/3 (Av')l/2 Re 1/2

d

Figure 1, compares the calculated vaporization response (equivalent to the
burning rate response for this model) for equation (3b) and 6b) over a range
of realistic values of Re,. For comparison purposes, the typical values of
S =1, v,=0.04, and p'= 1.5 were assumed. All numerical results in this
report are based on the vaporization response of equation (5b).




Droplet Drag Model

A derivation of the nondimensional transport equations for a combustion
instability model containing the effects of droplet drag is given in Appendix A.
It is assumed that the liquid phase consists of a uniform spray of constant
dlameter droplets with a velocity in the axlal direction only. The concentra-
tlon of drops does not vary within the annulus. As the burning propellant
drops pass through the annulus, they are acted upon by a tangential pressure
and/or velocity wave which may occur at random In a real engine. The vector
velocity difference between the drop velocity and the gas velocity (including
axial and tangential components)produces momentum exchange and kinetic
energy dissipation. The effect of this interaction is to producean attenuating
effect on the disturbance wave.

The nondimensional instabllity equations derived in Appendix A are

Continuity. -
dv'

3p!' vl 2N R0, 30 sy (6)
T - (55 + 52 ) " Veser "V e Y
Momentum 3yt 3t 33y
(6-direction). - 1 OV . Vg 1 ap 9 (73)
s = PV 30 Ty a6t IOV S g
| vl (vlg)
- Ve' w' £ 1@) - Spo' g
Momentum : aV' 1 , ' .
(z—-direction). - 0=-p Yz 3z' -1 I - SEl) (Vz vJZ,z) w (7b)
' IVZ - v£'z| (v'z - V'Jl,,z)
Energy- - -bp o
__':E _ T aZT, Bv'e v
p' = - - - y Y, __ 2
se = - (v 35+ v, ) +at6) ser | v 1P(ggr+5F)
v, dv! av' 3
4 - 9,2 z 2 V
+3lro-nla (50 + () - 552 52 ]f(y)
- 3/2
+| yy-1)| Hp’ " v'e2 + (v - Vk’z)z:' (8)



Axial derivatives are determined by integrating the nondimensional

equations (6), (7), and (8) in the annular direction (8 direction) and assuming
that the total mass, momentum, and energy within the annulus remains con-
stant. The integrated equations are given in Appendix A as equations a17),
(A18), and (Al19)

Appearing in the nondimensional transport equations are the following
similarity parameters that characterize the stability of an annulus

Re = 2rd po ao - Renolds number of the drop based
d o on speed of sound

-+

]v -v,
AV = ) . Nondimensional relative

o axlal velocity
9)

r m

an
£ = T = Burning rate parameter

3 CD3 ran
H = —=Ppan._ Drag number

8 rd

The first three are familiar in that they appear in Priem's original
model. The last term, B, the drag parameter,appears as a result of our
current modifications to include droplet drag. In addition, the viscous dissi-
pation parameter

9__H_Cf_

Tan Pc g

also appears in the nondimensional equations. An order of magnitude analysis,
and previous numerical solutions have indicated a negligible effect on sta-
bility over a wide range of realistic values of J for a liquid rocket combustor.
Therefore, J, has been excluded from the parametric variation to determine
stability limits. The effect of Jon the wave shape is discussed in the

Results and Discussion section of this report

Drop Spray Distribution

The amount of mass or heat added to the gas phase as a result of the
vaporization response of the propellant spray to the disturbance wave is
the driving force to sustain a wave. When heat or mass is added in phase
with the wave, the effect may be to amplify the wave (Rayleigh's Criteria)
depending on the magnitude of the addition and other damping factors which
may be present.




Variations in propellant drop size produced by the atomization process
require that a distribution of drop sizes be considered in the instability
analysis, rather than the assumption of a single drop size as was done in
the original model. The need to consider a distribution of sizes can be
inferred from Figure 1, which shows the variation of vaporization response
as a function of drop size (Re, is directly proportional to drop size). As
part of a program to Improve upon the assumptions of the original instability
model, a drop spray distribution has been included in the current formulation.

Appendix B discusses the model modification in detail. The resulting
expression for the vaporization response (buming response, except for the
bipropellant model) is

J‘ [z+o 65_ (p)l/zl(vd + Ay (D)2 [/4Red(r)1/2:lf(r)dr

o . 10)
[ rl[z+o.sscl/3A v'(r)l/z] £()dr
o

where f(r) is the distribution function describing the drop size variation within
the spray entering the annulus. In the bipropellant model, discussed in the

next section, a distribution function is required for both the fuel and the
oxidizer sprays.

For the numerical calculations, a logarithmiconormal distribution of
drops was assumed, given by

fr) = 3—N-=-Ia_~ x{ Z[In(_)] } (11)

[y

where a

£
Vzw tno

A logarithmiconormal distribution was chosen as a matter of convenience.
Our steady-state combustion program, which is required to define the steady-
state gasdynamic and combustion parameters at the annulus being investigated,
assumes a logarithmiconormal distribution at the injector. It was determined
that although the mean drop size and geometric standard deviation of the
spray changes between the injector and the axial position of the annulus, the
distribution is still nearly logarithmiconormal. Since no valid criterion for
choosing the best distribution has been established, the logarithmiconormal
distribution was a natural choice for our numerical studles; however, any
distribution of drops may be substituted in the model for future investigations.
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Bipropellant Instability Model

In determining the response of a bipropellant system to a random
disturbance the vaporization response of both propellants may be important.
Since the disturbance wave may not produce the same vaporization response
for both the fuel and oxidizer sprays, the local instantaneous amount of vapor
phase fuel and oxidizer present may not be the same as under steady-state
conditions. Priem's model assumes that the response of both propellants is
the same, in that the amount of heat added to the flow is proportional to the
amount of mass vaporized of the controlling propellant.

In our current model, the amount of mass added to the system through
fuel and oxldizer vaporization response to a disturbance is considered inde-
pendently. The amount of heat added to the system, ls based on the instan-
taneous vapor phase @73

A derivation of the instabllity equations for a bipropellant system is

presented in Appendix C. The resulting nondimensional transport equations
for an annular model are,

'Continuitz. -
l avl

o' _ _ (8. _=z>__, 23 __, 3 . .
at! 38! az' Vé 36" Vzaz £fwf £(v) +£ox woxf()’) (12)

Momentum (8-direction). —

dv! Bv'e azv'e
O T =P T ) 3 e - vy [, s ] 6
Gee )
-+ ) p'lvy vy (13)
Ta,f  'd,ox 66
Momentum (z—direction). -
dv 1 BP
0=-p'v ~f - £ w'- - '
e z Bz l_' o) (V Vf,z) w f(Y)(V Vox,z)‘:ox oxX
v —y! [ [ !
-5, p l Z Vf,z, (Vz Vf,z) -5 . ’ Vz vox,zl (Vz Vox,z)
f r' oxf r! (14)
d,f d,ox




Energy. -

av! ov!
. T~ Ve Tz
p ( e ael Z azl) +gf(‘y) e|3 ly 1! P \aex +azt /

2

av'
4 i 27
+3 lyo-1)l 9[ \39- +Kaz' ae 3z' ]f( )

L t . - (£ ' g ' t
+Ew' fh)y - (£ W'  +Lwl) f6)T

f('y){ f[v'2+(v V )2] w(') [v'2+(v —v )2]}

OX

[v' 2+(v v )2 3/2 [vt 2+(v -y )3]3/2
a Z + 5 Z Z,0X 3
Td,f oX 'd, ox

+yly-1) p'{ﬁf

Although the equations appear similar to those of Reference 1, a burning rate
parameter for both the fuel and the oxidizer spray, as well as independent
vaporiza'tion response terms, wl, w' are present in the bipropellant equa-
tions., The droplet velocity Re para)r(neter and drag parameter are also con-
sldered independently for both propellants. The appearance of these additional
"stability parameters” make it more difficult to map the stability limits since
several additional dimensions must now be considered.

11
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RESULTS AND DISCUSSIONS
Numerical Methods

The Dynamic Science combustion instablility program uses a predictor-
corrector scheme to obtain the solution of the nonlinear system of equations
defined in (A-11) to (A-13) and (A-17) to (A-19). The numerical scheme com~
bines a first order explicit scheme with a variable iteration first order implicit
scheme in the t direction. The spatial derivatives are approximated with a
first order central difference scheme. The variable iteration of the implicit
scheme is controlled by an error criteria, requiring a given significant figure
agreement or a maximum number of iterations, whichever occurs first. In the
final report for NASA Contract NAS7-366(Ref.2), a complete discussion of this

numerical method can be found. Appendix D contains a discussion and
current listing of the bipropellant combustion instability program containing
the droplet drag effects.

The proper choice of the ratio of the time interval divided by space
interval, At/A@, and the magnitude of each remains difficult. Attempts to re-
late numerical stability criteria derived for linearized instability equations to
numerical stability of the nonlinear equations has been only marginally succes-
ful. While no known stability criteria has been developed for Priem's non-
linear instability equations, a good estimate of the integration step size
requirements can be made by examining the physical phenomenon. Recent nu-
merical experiments with the Dynamic Science combustion instability program
gave definlte encouragement to this physical approach to the problem of
numerical stability and numerical accuracy. Cases have been computed using
20, 40, 80, and 160 nodes under identical operating parameters. The results
indicate the damping effect of too few nodes. In effect, too few nodes prevent
the wave from steepening into a shock wave, and therefore neglects the impor-
tant nonlinear phenomenon. Our results indicate that at least 80 nodes and:
possibly as many as 160 are required in the numerical integration.

It is essential when making accuracy checks with the combustion insta-
bility program that the mesh ratio of At/A 8 remain constant while reducing the
independent, At and spatial step A6. Most of the existing results were com-
puted with 40 theta nodes and an independent step of .0625, Accuracy checks
have been made by comparing 40 node runs with the results obtained from 80
nodes and a At of .03125. However, each step reduction multiplies the
machine time by a factor of four, thus making long runs with very small steps
prohibitive.

At this point, we feel that the problem of adequately describing the non-
linear combustion instability wave in Priem's one-dimensional model is well
in hand. The physical approach, rather than an analytical extension of linear
stabllity theory has been more successful.




Instability Wave Description

Nonlinear Nature of Instability Wave. -~ An
Interesting result of the numerical integration of both
Priem's model and the current extension Is presented in
the accompanying figure. An initlally sinusoidal pres-
sure disturbance of amplitude equal to 25% of the steady-
state pressure rapidly develops Into a steep fronted wave.
In the accompanying figure the wave form around the en-
tire annulus (2 wradians) is followed through a series of
integrations in time. The abscissa represents the posi-
tion around the annulus (0.0 and 6.283.. .radians are
the same point) and the ordinate represents the non-
dimensional pressure, P/P , around the annulus. The
expected wave form for this type of disturbance is a
standing wave with zero pressure nodes 90 degrees
around from the maximum pressure node, in both direc-
tions.

The disturbance propagates around the annulus in
both directions producing an alternating high and low
pressure at both the maximum and minimum initial pres-
sure locations. In the sequence of three figures at the
right the wave seems first to decay, for nondimensional
time between t = 0.0 and 1.5, and then to build up on
the opposite side of the annulus at t = 3.5, as would be
expected. The nondimensional time of 3.14 (7) radians
represents the time it would take for a disturbance to
propagate half way around the annulus if it travelled at
the sound speed.

The nonlinear effects of the model appear almost
immediately in the wave form. Following the distur-
bance further, in time, the nonlinear nature becomes
more evident as the disturbance continues to travel
around the annulus in both directions. At t= 8.5 the
steep fronted nature of the wave ls evident. Several
recent experimental studies have confirmed the steep
fronted nature of an instability wave traveling around a
combuster (Hefner, Ref. 4, Clayton, Ref. 5).

The ability of the computer solution to allow a
linear disturbance to develop into a steep fronted wave
is dependent upon the number of points taken around
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the annulus in the integration. An insufficlent number of points tend to
"hold down"the wave and not allow the nonlinear effects to develop.

The figure below indicates the nonlinear nature of the solution.

TYPICAL INSTABILITY WAVE

&£=Q/, PIXIO®, AV=0.01 , Rey=/000 , £=1.20
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Following the amplitude of the disturbance for increasing nondimensional time,
t , the wave first damps at a rate of approximately 20%/cycle*. After one or
two cycles, shown previously to be the time it takes for a steep fronted dis-
turbance to develop, the damping is arrested and the wave amplifies, at a
rate of about 13%/cycle. Eventually (t>20 cycles) the disturbance reaches

an ecuilibrium amplitude (not shown on figure).

Viscous Damping. ~ The effect of viscous damping on the final shape of
the "steep fronted" wave has been examined. Figure 2a shows the velocity
profile in the annular direction for a typical Instability case with 80 nodes
taken around the annulus. The effect of the viscous dissipation term, 4, on the
slope of the final velocity profile is shown for values of

4 = 3x1 0—2
9= 3x107°
7= 3x10_8(realistic value)

*One cycle is the time it takes for a disturbance to travel entirely around the
annulus and return to the same position. For a disturbance traveling at the
sound speed this is equal to 27 radlans of nondimensional time. Oncethes dis-
turbance has developed Into a steep fronted wave, the disturbance travels
faster than the speed of sound.




Figure 2b shows the profile of the velocity derivative for various values of J.

It is evident that viscous damping tends to smooth (hold down) the wave
shape and that there is a critical value of § below which secondary wavelets
form. These wavelets represent numerical error which, because of the non-
linear nature of the solution, may grow into an {nstability and therefore should
be eliminated by the addition of more nodes in the annular direction.

Droplet Drag

The annular combustion instability equations derived in Appendix A have
been programmed and a limited parametric study has been conducted. The
addition of a new nondimensional variable, the Drag Parameter,f ,to the original
set of stability parameters, £,4 , AV, Re,, and AP/P_ makes a full parametric
variation impractical. Instead, typical values of thecoriginal stability para~-
meters were chosen and the drag parameter was varied independently. Rea-
listic values of B, between 0.1 and 100, were used. The component of the
droplet velocity in the annular direction was considered to be negligible since
the droplets must be assumed to enter the thin annulus axially In this one
dimensional model and can not respond to the disturbance wave due to their
inertia. The coefficient of drag, C,,, was assumed constant and was computed
as a function of the Reynolds number of the drop based on the mean drop diameter
and the average value of the relative velocity.

Determination of the Drag Parameter corresponding to a particular annular
position involves the evaluation of the liquld concentration at the annular
location, since

3 CD 32 Tan
o= 8 r
d
Py
where F = 5.
P d
and lbmliquld -
Py, = liquid concentration = nit volume of

two-phase mixture|
1b
m ]

unif volume of drop

Pd = drop density =

15
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Relating pz to operating parameters

Liquid propellant flow rate
A [ 1b 1b
_ W _ _ tat annular section, “prop /sec _ [ grogJ
Py sz [Area of chamber [Velocity of liquid at ft
at annular section, ft annular section, ft/seC]

The propeliant flow rate at the annular section, W, and the average liquid
velocity in the annulus are obtained from our steady-state combustion computer
program and used as input to the instability program.

The variation in the drag parameter may be seen in Table I below
TABLE I - REALISTIC VALUES OF 8

. - — 3 - —
(Injection velocity = 1000 in./sec, e = 50(1bmft ), ry = 3 mils, CD =1,2)
Injection
\%low Rate Chamber Percent P/Z,
Inj Diameter Vaporized . 5
[m prop ; m)e at Annular [1bm,1iquid :l p
in. s
Ibgec plane ft” mixture
6000 40 10 7.5 .147 440
25.48 11.91 10 .356 .0071 6
0.345 2.0 10 .17 .0033 0.5

Typical results of the parametric droplet drag study are shown in
Figures 3 and 4. Figure 3 shows the time variation in dimensionless pressure,
P', at the maximum pressure node for a parametric variation in the drag parameter,
B, between O and 100. The initial disturbance amplitude A , was 0.03 for all
cases. The other Egabilityparameters characterizing this t}%lcal case were:
Av'=0.01, 9=3x10 ~, £=0.1, Re .=1000. With the drag parameter set to zero,
this condition produces a marginal instability. Increasing the drag parameter
increases the damping effect of the droplets and with & set to 100, the wave
damps quickly.

A composite stability limit curve has been generated for the variation in
critical peak to peak disturbance pressure AP/P_as a function of the burning
rate parameter, £. The drag parameter has been varied parametrically with the




other stability parameter_% characterizing the flow held constant at Av'=0.01,
Re, = 1000, and #=3x10 ~. The results are presented in Figure 4. Other
va?ues of Av' and Re , were also used, in a parametric variation of £ and &

and showed the same trends as Figure 4.

The inclusion of droplet drag in the instability model greatly affects
the stability limits for values of £ <4 and values of 5>1, Although £ and .p
both depend upon the droplet size, geometry of the combustor, and concentration
of propellants, and therefore can’t be varied independently, the stability limit
curves presented in Figure 4 do show the effect of droplet drag for realistic
combinations of £ and £. At high values of £ , damping of the disturbance wave
due to droplet drag is overshadowed by the large amount of heat added to the
wave., It was shown in both References 1 and 2, that a disturbance either
amplifies or damps within a fraction of a cycle for large values of £.

For engines operating below £ =1, a small change in the drag parameter
can produce a large change in the disturbance amplitude required to trigger an
instability. Increases in the drag parameter can even produce an unconditionally
stable annulus that previously would have been triggered spontaneously.

Unfortunately, methods of increasing # without affecting the other sta-
bility parameters, are not known. The drag parameter may be increased by
decreasing drop size, increasing the propellant flow rate, or decreasing the
drop velocity. To meet a specific thrust requirement, the propellant flow rate
must be held nearly constant. Changes in drop size or drop velocity will effect
the burning rate parameter at the annulus under consideration. The complexity
of the relationship between the instability parameters and the engine operating
parameters makes general conclusions difficult. Specific engine systems,
however, can be analyzed based on their specific geometry and operating
variables.
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Droplet Spray Distribution

A serles of numerical solutions were generated using Equation (10)
for the vaporization response and Equation (11) for the drop size distribution
function. The mass-mean drop radius, r was varied from 1 to 10 mils and
the geometric standard deviation was varied from 1.5 to 3.5. Values for r,
were computed from

- 2
r =1 e 3(Inch)

For each combination of r and ¢ _, used in the instability solution, the
corresponding values of Av' and ﬁela were obtained as functions of drop size
from the results of the steady-state combustion program, and entered as data
in the instability solution. The burning rate parameter, £, was obtained also
from the steady-state solution at the annular position under investigation, and
was based on a drop size corresponding to the number mean drop.

Figure 5 indicates the effect of changing the mass-mean drop radius and
the geometric standard deviation of the droplet spray, for a particular set of
initial instability parameters. Increasing @ _ with r held constant decreased
the number mean drop radius, r, . A decrease in rn‘nézorresponds to a decrease
in the average Re | for the spray, which, as shown in Figure 1, decreases the
burning response of the spray and therefore makes the system more stable. A
decrease in rm, for a constant value of o'G has the same affect on stability.

Generalizations are difficult because changes in the drop size or
distribution also produce changes in the other stability parameters, such as
£, 5, and Av. Specific numerical solution should be obtained for each engine
condition and geometry of interest, rather than relying on an interpretation of
general trends.

Bipropellant System

The model developed in Appendix C to account for the response of both
propellants to a tangential disturbance wave has been programmed and several
cases run. The first series of runs were made to determine general trends produced
by the independent addition of mass and heat to the gas phase and are summarized
in Table II below.




TABLE IT: COMPUTER RUNS - GENERAL TRENDS

Burmning Rate
F;?un Parameter Relative Velocity Red Parameter Controlling
Number Fuel | Oxidizer Fuel |Oxidizer Fuel |Oxidizer Propellant
S’f £ox ‘ AV% AV'ox Red,f Red,ox

1 .05 .05 .01 .01 1000 | 1000 Fuel

2 .05 .10 .01 .01 1000} 1000 Fuel

3 .05 .50 .01 .01 1000 1000 Fuel

4 .05 1 1.00 .01 .01 1000 | 1000 Fuel

5 .05 12.00 .01 .01 1000{ 1000 Fuel

6 .05 110.00 .01 .01 1000 1000 Fuel

7 .05 .05 .01 .01 1000 J100,000 Fuel

8 .05 .05 .01 .1 10004} 11000 Fuel

With reference to the NO DRAG STABILITY LIMIT CURVE of Figure 4,

a comparison with the bipropellant model of Table II is possible. Increasing
the burning rate parameter of the noncontrolling propellant has the effect of
increasing the rate of mass addition to the system while maintaining the rate

of heat addition constant. The results of runs 1-6 of Table II indicate the same
trends as would have been predicted by the monopropellant model, assuming

that
£t = (£+£ )

onopropellant R ox /bipropellant\
model \model )

Run number (1)} produced a marginally stable wave in response to an initial
AP

avg
of the NO DRAG stability limit curve of Figure 4. Increasing the total burning
rate parameter, £ through mass addition rather than heat addition as was

= .03 corresponding to £t = ,05+ .05= .1 which is on the left side of

tl
done in runs 2 and 3, produced marginal stability in response to a lower value
AP . - AP
of . Run 3 corresponding to £, = .55 is close to the minimum 3
avg avg

point of Figure 4. Further increases in £, as is the case in runs 4-6,

produced increased stability, as would have been predicted from Figure 4.
In general then, adding mass to the system without added heat produced the
same trends as adding both mass and heat simultaneously.
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Runs 7 and 8 were made to determine the effect of changes in

1 ' 3 tt 113
Red,ox and Avox independent of the corresponding "fuel" values.

Increasing Red ox from 1000 to 100,000 helped to stabilize the instability

7

slightly. It is felt that a similar increase on the low end of the scale, say
from 100-1000 would have produced a much greater stabilizing effect. The
effect of increasing Av(‘_)X from .01 to .1, as was done in run 8 had no effect

on the instability wave.

In addition to the general effects discussed above, the results of a
stability analysis on a real engine using both the monopropellant and bipropellant
model is presented in the "Application to Engines" section which follows.

Application to Engines

To determine the effect of independent mass and heat addition on the
stability analysis of an engine, both the monopropellant model of Appendix A
and the bipropellant model of Appendix C were used to numerically predict the
"gtability map" of a real engine. Only one engine geometry and set of operating
conditions could be chosen because of the number of computer runs, and hence
the expense of analyzing an engine. For this reason the results cannot indicate
the similarity or difference between the two models at other engine operating
parameters.

The basic engine parameters used in the study are:

PROPELLANTS - RP1 - LOX

FLOW RATES: Wf(

RP1) 1800 1bm/sec

Wox(Lox) = 4320 1b_/sec
MEAN DROP SIZE: rn, = 3.0 mils
Geometric Standard Deviation og = 2.30

ENGINE GEOMETRY AND QPERATING CONDITIONS

Chamber Pressure, Pc = 700 psia

Chamber Area, A_=1250 in® ﬂ= 10.5
Throat Area, A =118 in®

Initial Av'f = 0.0425

Av' = 0.0168
oxX

Based on the above parameters, the Dynamic Science Steady-State
Combustion Computer Program (ref. 2) was used to analyze the steady-state
burning of both liquid propellants as they vaporize and burn while moving




axially in the combustion chamber. From these results, the nondimensional
stability parameters needed to characterize several similar positions within

the combustor were obtained. At each of flve axial positions within the com-
bustor both instabllity models were used to obtain the initial pressure amplitude
required to trigger an instability. For simplicity, it was assumed that the drag
parameter was zero, however, if results were required for a real engine, this
would not have been neglected.

The stability parameters as well as the resulting threshold PA P are
presented in Table I below. avg
TABLE ITI: INSTABILITY ANALYSIS
AP
Pavg Threshold
X Bipropellant {Monopropellant
Position Model Model ‘£f L ox Red,f Red,ox AVf AVox Vg
0.02 0.026 .024 .17 1 «8 1 2100(2300 .0131.038].05
0.05 0.025 .023 .28 |1.7 | 220012100 .01 1.025/(.05
0.10 0.037 .041 .61 .94] 21001900 .015{.01 1].05
0.125 0.055 .058 .67 | .54| 2000 {1800 .0191.01 1.05
0.20 0.30 350 .61 ]1.4 ]1600}1300 .03 }.0251(.05

The monopropellant model cases were run by assuming S't = £f + sz and
Lv=Avg, Req = Req f, The results are plotted in Figure 6 in terms of the thres-
hold pressure disturbance as a function of axial position of the annulus. In
addition, Figure 7 shows the time response of the system to varioeus disturbances
close to the threshold disturbance value for three of the axial positions
(x=0.02, 0.05, 0.10).

The results of this particular engine analysis indicate that the bipropellant
model predicted the same general trends as did the monopropellant model, Al-
though the threshold pressure disturbances are not identical, the additional
mass added to the gas phase through excess noncontrolling propellant vapori-
zation did not shift the equilibrium stability point greatly.

These results are not general. Other analysis using the bipropellant
model at different operating conditions did not produce the same agreement
between models. These results were not complete at the time of publication
of this report.
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The process of parametrically varying one of the stability parameters
while holding the others constant can lead to some false conclusions about
how to fix an unstable engine. In a physical situation,changing one of the
parameters usually changes several others also. For example, in Figure 8,
the affect on stability of changing the mass-mean drop size or the geo-
metric standard deviations of the propellant spray, for a particular engine
(particular stability parameters) is shown. Rather than hold each of the other
stability parameters constant (£, &, Re ., Av, 0 ) they were recomputed with
our steady-state combustion program based on t%e value of mass-mean drop
radius chosen. Point 1 on Figure 8 represents the base engine, which is
marginally stable. Changing r_ from 3.0 mils to 2.0 mils (Point 2) produces
the corresponding changes in Jln,l B, and Re, indicated on the figure. The
dashed line represents the new stabllity lgnit based on the values of Re , and B
at Point 2. In this case,making the drops smaller produced negligible agfect on
stability through changes in Re, and &. However, the change in £ shifted the
engine operating point into the very stable region. Examples of increasing the
drop size can be seen at Points 3 and 4. Point 5 shows the effect of choosing the
wrong value for the standard deviation of the spray. A change in¢ _ from 2.3
to 3.5 changes the engine stability from neutral (marginally unstablé to the
specified disturbance level) to unconditionally stable to all disturbances.
While this example serves as a caution not to over-simplify the relationship
between parameters, any particular engine may be analyzed by specifying
the stability parameters and then letting the numerical solution predict
stability, within the validity of the model.




GENERALIZED RESULTS AND CONCLUDING REMARKS

A nonlinear combustion instability model has been developed and
solved numerically for an annular combustor of small thickness and length.
Following Priem's assumption (Ref. 1) the vaporization rate of the propellant
spray was assumed to respond instantaneously to a gasdynamic disturbance

wave traveling around the annulus. The following results were indicated by
the numerical solutions.

1.

2.

A finite disturbance is required to trigger an instability.

The minimum amplitude disturbance that will amplify into an
instability is a function of:

a. The burming rate parameter of both propellants, £, and £ox'

f
b. The velocity difference between the propellant drops and the
combustion gases, considering both propellant sprays.

The drag parameter, 2, indicative of the amount of momentum
and energy transfer between the drop spray and the combustion
gases.,

d. The size and distribution of droplets of both fuel and oxidizer.

e. The characteristics of the particular propellant or combustor,
only as they affect the determination of the above parameters,

As was found by Priem, gas phase viscous damping, associated
with the viscous dissipation parameter, ¢, had negligible affect on
the stability limits.

For values of the burning rate parameter £ less than 4, droplet
drag can be very effective In attenuating a disturbance. In this
region inclusion of the effect of droplet drag in the solution pro-
duced radically different stability limits for values of the drag
parameter , &, greater than about 10. At higher values of £

the combustion process dominates the stability solution and over-
shadows any damping effects of droplet drag.

An accurate description of the droplet size distribution produced

by the atomization process, as well as how this distribution
changes during its history within a combustor is vital to a meaning-
ful prediction of combustion instability.
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Considering the heat addition and mass addition to the system
independently (bipropellant model, Appendix C) produced
significantly different numerical results when compared with the
linear heat and mass addition model (monopropellant model, Appendix
M. The addition of mass without heat produced the same trends as
the addition of both heat and mass.
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APPENDIX A
ANNULAR COMBUSTION INSTABILITY MODEL INCLUDING DROPLET DRAG

The transport equations for an annular combustion instability model which
includes the effects of aerodynamic droplet drag are developed in this appendix.
The derivation follows closely the original instability model of Priem (Ref. 1)
with the addition of momentum and energy transfer between the liquid propellant
droplets and the bulk combustion gases due to aerodynamic drag. The nomen-
clature used is that of Bird{Ref.2) alsoused by Priem. In developing the droplet
drag addition, Priem's derivation (Ref. 1) of the annular model was carefully
rederived. A full derivation will not be repeated here, however, the important
steps leading to the drag terms will be reviewed. The model will be genera-
lized to a droplet spray distribution and a bipropellant system in the following
appendices, however, only a constant drop size of a single (controlling) pro-
pellant will be conslidered in this appendix for simplicity.

General Equations
Continuity. - Assuming that the volume occupled by the liquid drops

within the annulus is negligible, the mass balance equation (continuity) for a
stationary elementary unit volume may be written in the usual manner

o) -+
Gas a_te =-V-pv+w (A-1a)
R, >
Liquid Yol ViRV w (A-1Db)

where w is the local instantaneous vaporization rate; equal to the rate of disap-
pearance of liquid propellant.

Momentum. — A momentum-balance applied to a stationary unit volume
through which both gases and liquld propellants are passing leads to the
vectorial equation:

3 + - -+ 2
5t pv_-V.PVV—V.P,(I,VI,VI,—gVP—V'T (A-2a)
The divergence of liquid momentum from the unit volume can be

rewritten as

. 4 o -+ -+ -+ b
“PVV, T Yy V-pzvz+PL(vz -V)vz (A-2b)




From the liquid continuity equation
- sz
Vil T T v

A change in liquid density within the annulus with time 9dp /3 t, requires a
change in the liquid velocity entering the annulus, since t%'le drop flux remains
- constant. For the one-dimensional model change in flow properties entering
the annulus Is assumed to be zero, and therefore there cannot be any bulldup
of liquid within the annulus.

-’
Hence, VooV, = -w and equation (A-2b) reduces
to
ndnd - - - )
Vip,V,v, = T Ve pz(vz-v) v, (A-2c)

In Priem's original model, the last term above is assumed to be zero based
i i - -+

on the assumption of constant liquid velocity, (Vf, . V)vz - 0.

Actually, if the same assumption as was made for the gas phase;(i.e.,constant axial

velocity due to the thin annulus while allowing for an axial derivative,)is made

for the liquid phase, then the effect of droplet drag forces on the gas phase

shows up.

Written in terms of the drag cgefficient
Dv d ¢

PJZ,(VI,'V)VZ =0, Dt (since 5t = 0)
-+ -+ ’—»—&l
R O W e
D g Py Dt g 8 Dde Ty
+ l—»-r
213, o, o by
D g8 "> pP r

-+
where PD is the drag force exerted by the gas on the droplets, and 3P is a

"packing fraction" representing the volume occupied by drops, in a unit volume
of gas~drop mixture.

The divergence of liquld momentum is then

v 4 - +
AN IR L

P (A-24)

D

27




The momentum equation can be written as

d - 4 - -
3 Ev) = -9V -pvv +v£a,-gPD -gvP -V-T

or after expanding the first two terms and using the gas continuity
equation (A-1la)

5\_; _ - - -5 - -+ v v 9
P 3 = —p(v-V)v— (v—vz)w—gFD—g P - . T (A-2)
Energy. - Following Priem, (Ref. 1), the energy balance equation for

two phase flow passing through a stationary unit volume written as

3 1 3y _ _ - 1 2 o 2 1 2
ot (pCvT * 2g7J pv ) = v-pv (CVT * 24g] v v PEVL (UJ&+ 2g7 VJ&)
-» 1 -» 1 -
-V - - VPV - — V- (T-
q Vg (- v)

The divergence of total energy (internal + kinetic energy) from the liquid phase
is given as
Y 1 a 1 2 2
— vey+(U A+ V) V. BV,

Aoy 2
Vop Ut 297 V) TPV YU Ve WUt e Vi

(A-3a)

where again
_'
v- Py = - W

Assuming a constant liquid temperature (v U, = 0) but allowing for
acceleration of the liquid due to gas-liquid drag, the first term on the right
hand side of Equation A-3a, representing the loss of energy by the liquid due

to changes in liquid internal energy and liquid velocity, reduces to

Y

;-\7(U+1 v2=pv-V“—'—'lv2
Py’y ¢ 297 Y Al 2g] 4
- —~ - -+
=g](>zvz"1_("z'v)"zlf
—’
1 S sz
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In terms of the drag force

1 -

a7 Pels

and therefore the divergence of energy from the liquid phase is

p(U

and the energy equation therefore is

d
dt (pch+2

Expanding and rearranging with

the energy equation can written

3T _
PC, 3t

. 12 I S
IZ)_IFDVJ& (U+ZIV)w
1 _ o2 1 12
g7 P T SV evC T g V) TR,
1 2 +
+ (U, + 297 viw - V-q
_Ilv-ﬁ- gLI-V-(T-;;)
v.g = -APT,
v R 3-[2(3.:7) 2;’:|
- oC_ (v-V) '.l.‘+>\v‘T—Il VPV —glIV-(T-V)

<<

(A-3b)

(A-3c)

(A-3d)
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-
Now , dotting the momentum equation, (A- 2) with the gas velocity, v, and
dividing by gJ we get

1 2 3v + - 1 2+ -
—_ ¢ ——— = = —— ogve (v -VIiV--—"— vV v-v_ ) W
a7 &V 3t g; P ( ) gy (v=vy)
1 -+ - 1 -+ 1
- =y - - = « VP - — (VT
T v FD ]V a7 v )

-
Substracting the momentum equation (dotted with v) from the energy equation
(A-3d) we get

N

3T _ -+ 2 P 1 =
pCVat— pCV(v-V)T+>~VT—I Vev gIT'VV
(Ar-3¢)

L7 "’) C T+1—v-(v—vz)]w

I_ (v V)+[Uf, 29]

Combining velocity terms, the last expresslion is

[UE—CVT+ I(v -v° +2v-2v-v)]w

2

= [U/Z -C,T+ ?15}(3—3)2)- (3-3/&)] w

therefore, the final energy equation, with drag is

- -+ -+
pC o _ ‘PCV(V-V)T+>\V2T—IBV-v——1~T: v

v 9t a7

+ Il ;D . (3—;}&) + w[UZ—CVT+ —(V—Vl) (V—Vt):l (A-3)




Nondimensionalized Equations

Following the transformations of reference 1

' _ 1 —_ 1 = L
t =ta/r P =P/P_ Iy -
an
v' =r V T =Tr__ /M a
an an""o o (A-4)
w' = ww T = T/T
o) o)
p' = P/Po v =v/a,
the nondimensionalized transport equations are:
Continuity. -
op' 1ranmo
3 o T VeV o+ a ’ w’ (A-5)
Po
Momentum. -
g 91_3 ’
av -’ c ] )
plgl.:_pl(vl.vl)vl_ VIP _r pa v T'
o o an'o o
(A-6)
(3C 3 ("-’I)III";‘-”'I
Tan%o | » g o pranl , ViV £
- (V’—VL)M - 8 P r'
po 0 I rd ‘ d
Energy. -
IR O e | g _]_r:c__’ Py v
Pragg™ P o 0o CTJ
an"o v o o v'o
aH l 2 ‘lworan Uy ao2 I" 2 l
vy ———‘ w [ G T ) 2]
ranp vaTogI l % % Cv:[‘o 2g]cho £
s b
I [
33 Cprnal|  wvplvi-vg| s
+ S9TC T 1 ! = (v v, ) (2-7)
a7 vio d d
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Following Priem's assumptions and substitutions and with the addition

2

3C_ & r a
D an 0
b= —=2L 30 4ng - = ¥y (y-1)
8 rd CVTog]'
we get final transport equations
Continuity. -
B = vV W L) (a-8)
Momentum. -
3y - a1
OV ifgte 9 ule = UID! Vo'
[ p'v's V') v yVP ) T
e
a o (V’—V;Z,)IV'_VJ'L,
=(v'=vi) w'Lily) - Bp’ o (A-9)
d
Energy. -
1 - )
o o @ e TgEe) <yl e
- -1 >
Ay -1 g5 ) 7 (5190 w8t w [y-1s DG P ]
-+ - -+
[v'—vkl(v'—-vé) N
+lyo-1l bp! = L (v (A-10)

Annular Model

Transport Equations. - Assuming

1) No radial velocity or derivatives v. =0, dv /3r =0, etc.

2) No variation of axial velocity around the anhulus 3v /36=20
3) No second derivatives in the axial direction, 3° ()/Za z°= 0,
4) r,o=T r'=1,

the nondimensional transport equations for the annular model, including
drag are:




Continuity. -

30! av'e Bv'z 30 3p'
1! = —pl 28! +aZ'>—V'eae' —V'Z 37! +w£f(‘>/)
Momentum (6-direction). -
dv! dv! v
p' _ 6 _ e 98 _ 1 3P 4 )
e PV Tor T 5 3g T 3 e
| v (vg)
—v'w‘£f('y)—.8p" : -
] r
d
Momentum (z-direction). -
av'z 1, 3p'
=_pVZaz| —],)_,! Sz —‘Sf(')’) (VZI_VE,Z) w'
, 'Vlz B V,é,Z! (V'z —‘v,i,z)
-bp o
d
Energy. -
, OT' _ (o BT . 3T 2T
Plag = P (Mg ae * Va3 TIE0) 3

dv' 5 dv dv'

v! 2
+5 v o019 [ (55 + (52) - 552 522 | £O)

+Lfl)w {‘}’-T' + -(Zéﬁz[ v‘éz + (v vy 12)2] }

- 3/2
+yt-1)] dpr v+ vy - vy ° ]

(A-11)

(A-12a)

(A-12Db)

'
Z

. 6
—I 7_1|P<W+az'

(a-13)
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z Derlvatives (Integrated Equations). -

To determine the derivatives in the axlal direction, the conservation
equations are integrated over the volume of the annulus. Since there Is no

variation in the axial and radial direction, the equations only have to be

integrated In the 8-direction to apply the conservation equations to the entire
system.

Continuity. -

2w 27 av! ov'

9! Lgi = w8 z_.é_g'_._a. '
k| L P\ etz ) Vy S Y 3gte ‘gf(”)]de
o o) (A—].4)
Momentum (z—directionL. -
lvl -y I (Vl _vl
Tept Z _1._ .a_E_l_. [ ' [ z 'q‘.LZ '
0—_I [P vz 3z' * v 3z +£f(7)(vz "z,z)“’ +5p r' ]de
(A-15)
Energy. -
27 2m dv! av'
aT' [} 1 aTI ] a ' ]
[or i =0 (ot 3 + v, 520) + 5 2100 -0-DP (57 + 55t
o o

v » 3v' 4 3 v! Bv'z

+5vo-0 104 550 * 5] - 59 s
+ w'i(y) { y-T' +_(2&112 [Véz +(V'z“"}z,z)2]

+(v ,z)z ]3/2

[§
Ta

+|y -1 2p' i

)} ae (A-16)

Based on a theoretical order of magnitude analysis as well as confirmation
in the numerical results, both terms containing the viscous dissipation para-
meter, ¢, were found to be negligible (approximately five orders of magrbltude
less than the terms retained) when Z Is given a practical value of 3x10
Noting that

'd6' = constant = 2m and assuming no variation of mass,
P

momentum or energy within the annulus with time and no variation in the small




distances, Ar'c and Az' as well as assuming that the axial derivatives of the
flow properties do not vary around the annulus, we get the final Integral
equations for the z derivatives.

Continuity. -

- av'z 3 T 2m
0=-2mi 5 +v', 5P | +10) [ wde: (A-17)
o

Momentum ~ z direction. -

Bv'z 1 3p’
0=27 Py vz + 211; T
- [
2m ]vz v“,/'z,(vz vL,z)

+sfy) (v' - v'z'z) Br w'de’ + 2mb (A-18)

Ta

Energy. -
27 av' 2w
= pp 2T ot 9L 4o o1y —Z 40
= =27 3% vz-i o) v‘6 YT de' - (y-1) 37 _]; P 'de
2r v 2 - .
- (r-1) [ Prasge 00" 40 Jwr{y-ro -0 [ Ve wp - vy )7 Thaer
o 0 2 ° !

~

=

. 2T - 3/2
Hvbnlsi— et vg - 2] (a-19)
o]
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APPENDIX B

DROP SPRAY DISTRIBUTION IN COMBUSTION INSTABILITY MODEL

Priem's original Annular Instability Model requires the selection of a
single "representative" drop size and "representative" relative velocity at the
position in the combustion chamber at which an annulus is to be examined.
This selection is very difficult and is eliminated in the current modifications
through the use of a drop size distribution. The Dynamic Science steady-
state combustion computer program described in Reference (2 ) is used to
analyze the change in an assumed initial drop distribution at the injector
face as the drops travel through the chamber to the point of interest (the
position of the annulus).

In treating a drop size distribution in the instability equations, the
first question raised was whether to use an analytical expression for the dis-
tribution function or to use a summation over a number of drop groups. The
advantages of an analytical expression are many:

An analytical distribution rather than a summation of drop
groups is mathematically more appealing.

The computer time usage is not increased significantly over a
single drop formulation, whereas if a summation over many
drop groups was used, computer time usage would be increased
several times,

Use of a distribution function assures that a uniquely important
combination of variables such as size and velocity, which might
not be evident in choosing particular drop groups, will not be
omitted in the analysis.

The effect of changling parameters in the distribution function
(mean drop radius, variance) as well as changing the form of
the distribution function, can be determined easily.

The disadvantage: of an analytical distribution is:

Formulation and integration of the various parameters containing
the distribution function are more difficult than with a summa-
tion process.

The development of a drop size spray distribution model is presented in this
appendix,




Distribution Function. - Simplified Functional Dependence (see
Williams, Reference (7), for basic concepts.)

A spray of liquid drops in a combustion chamber {fuel and oxidizer)
will have a distribution of drop sizes, drop velocities, and drop positions
at any time. In general, then, the number of _glrops w;;chin a size range, dr, 5
about L, and within a spatial position range dx about x, and velocity range,dv,
about v, at a time t, will be given by the general distribution function.

dN = f (r, x v t)drdxdv where j = o(oxidizer), f(fuel)
and dN = number of drops in dr, dx dv att (B~1)

The distribution function, f,, must be simplified for our model, since
a general distribution for drop spra‘bs is not known.

The first assumption will be that the drop velocity is dependent on drop
size. In other worgs, a unique value of velocity will be assigned to a drop
size at a position x and time, t, instead of_’a velocity distribytion. This
velocity then will be the average velocity (v) of particles at xand r for a

time t. ® L 4
Ivfjdv
=" 0
@), =5 (B-2)
@ j

. -+ -+ -+
where Gj = ‘f fj dv = number of drops in spatial range dx around x and radius
o

range dr around r at time t.

For the one~-dimensional annular model, the change in the drop spray
distribution as a function of position within the annulus may be neglected.
This is in keeping with the assumption of constant gas and liquid velocities
across the annulus (axial). The groper distribution function is determined to
correspond to specific values of x for a given annulus,

-
de = fj (r,t)drdt at a given x (B-3)

The Dynamic Science steady-state combustion program is used to determine the
change in an assumed distribution tunction between the injector face and the
position of the annulus in question

The dependence of f, on time may be very important in the ultimate
solution of combustion mstcjiblhty problems. To account for this dependence,
however, more than a one-dimensional annular model is requlred Since the
value of f, must be specified at a particular annulus in question and held

j
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constant across the annulus {(very thin) the change in f, with time must come
from a nonsteady-state chanace in f, between the 1nject!)r face and the annulus
in question. This is consistent WiJEh assuming that the annulus represents a
portion (slice) of a wider region containing the total instability.

Inclusion of the time dependence of f, will require a two-dimensional
model (very wide annulus) or, at least, a castade of thin annull. For this
reason, the change of f, with time was neglected in our current one-~dimensional
model modification while realizing the importance of the assumption. Essen-
tially, the assumption allows determination of the sensitivity of the annulus
while the engine is operating at steady-state. This sensitivity changes,
however, with a finite disturbance in engine operation.

The dependence of f, reduces therefore to a single variable, size
(given by radius r).

-
de = fj (f) dr at a specified value of x (B-4)

Examining the transport equations derived in Appendix A (Equations A-8,
A-9, A-10) the three variables assumed to represent the liquid spray are w', &,
and v! . Inclusion of a spray distribution in the model requires that these
variables be specified as a function of the drop size distribution. The liquid
velocity distribution of the spray, at the annulus under examination, is deter-
mined by the steady-state combustion program and is considered to be input
to the instability model, that is

v, = vz(r) in equations A-8, A-9, A-10.

Determination of 8 for the spray distribution is accomplished simply
by noting that (subscript j is omitted for clarity)

3 © dF (r)
b= g CD ran I r (B-5)
where 4 3
p/& c{ 3 i pddN 4 No 4 >
3 = = == 7 [ r®dN =27 [rPf(r)dr
P Py Pq 35 35
and




Therefore

- -]
3 4
S==C_r = rr2f(n)dr
8 D an J‘ 3 ()
o)
1 -]
==TC_r r° f(r)dr B-6
2 plan J i) (B-6)
0
Here again, £ is determined independently of the flow disturbance since the

spray distribution function is assumed to remain constant. Once a distribution
function has been chosen, the drag parameter is computed with equation (B-6)
and is used as input to the numerical solution.

The burning rate response function, &/, must be evaluated at each
mesh point during the numerical solution, and is dependent on the drop size.
In terms of the distribution function

j‘nw ()i (r)dr

' =e? (B-7)
J"wo (r)f (r)dr
)

where w is the burning w is the buming rate of a drop of size r and determined,
as in References (1 ) and (8 ), as

-+ 1/2
w=K;1" [2+o.6scl/3 2r|"""z'f°) :l (B-8)
U
and
2> - 1/2
w=K* [2 +0.68%3 {Zd Vo—v,%,ol P ] (B-9)
o) r c \ .
u
where
DM,S, o
_ __Adr -
K = IRT PV constant

or in terms of an annular model, and with

fe o 2rpoao
ey ‘——“

39



40

the burning rate for a drop is

1/3 1/2|

w = K— [z+o 65 (0" v )3 Av'(r)2|1/4 Red(r)l/zj (B-10)

( 6
and

w_ = K'l; [2+0.6 s§/3 svi (/2 Red(r)l/z ] (B-11)

therefore, substituting into equation (B-7), the total burming response for the
spray is

[ ;1-[2+0.GSC/ 2 (vig?+ av' )2|1/4Red(r)l/2]f(r)dr

o}

w' =

Re (r)l/2 k f(r) dr

1 1/3, . \1/2
£r[2+0.68c Avi(r) 4

(B-12)

For the numerical solution of the instability equations a logarithmiconormal
distribution function was chosen such that

£ = 3_§ =§ ';' 2 [:/Zn ]

.
1

where a = ———
N2m An O
G

A logarithmiconormal distribution was chosen because our steady-
state combustion program, which is used to supply the instability parameters
at a particular annular position in a real engine, is based on a logarithmico-
normal distribution of drops at the injector face. It was determined that the
distribution of drop sizes remained nearly logarithmiconormal at typical
sensitive annular positions, although the number mean drop radius and geo-
metric standard deviation had changed. It was therefore a convenience, rather
than an experimental reality, that led us led us to use a logarithmiconormal
distribution. Any other mathematical expression for the size distribution
could have been used; however, no criterion for choosing the best one has
been established.




APPENDIX C
BIPROPELLANT ANNULAR COMBUSTION INSTABILITY MODEL

A derivation is presented in this appendix for the transport equations
describing unsteady combustion of a bipropellant system. The vaporization
response of both propellants is considered in determining the amount of mass
and heat added to the gas system. With this formulation, it is not necessary
to assume that all of the mass of liquid propellant vaporized, in response to
a disturbance, is burned. Aerodynamic droplet drag has been included in
the equations in @ manner similar to that of Appendix A.

In defining the dependent variables of the equations it is possible to
interpret the mass and energy transport in several ways. In Priem's equations,
the mass entering a unit volume consists of burned material (gas) and unburned
material (liquid or gas) as defined in Reference 1, with the subscript "£" repre-
senting unbumed material., In deriving the equations, however, it is necessary
to assume that the velocity of the unburned mpaterial is constant as well as the
temperature of the unburned material. Also, the terms representing the rate of

accumulation of mass, momentum, or energy contain only product gases (burned
material) and exclude unburned gases as well as liquid propellants.

Since the velocity and temperature of the unbumed gases will be identical
to the velocity and temperature of the burned gases, it is difficult to justify the
above assumptions. For this reason, and others, which are related directly to
the bipropellant formulations, we have chosen to consider a division of mass
entering a unit volume as consisting of gases (burned and unburmed) and liquid
propellants. With this in mind the derivation of the transport equations follow.

Transport Equations for a Bipropellant Model

Equation of Continuity. — A mass balance equatlon may be easily written
for two phase reacting flow through a stationary unit volume as,
Rate of mass _ -~ Net rate
accumulation> B &of mass i
where the rate of accumulation of mass within the volume is

d
ﬁ[pq”)f +pox

unit volume of mixture

e = gas density l: # gas :l
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# fuel :l

P = liquid fuel density [unit volume of mixture

_ L # oxidizer :]
pox— liguid oxidizer density [unit volume of mixture
Since it is reasonable to assume that the velocity of the liquid fuel and liquid
oxidizer does not change within the volume, and that the flux of liquid pro-
pellant drops into the volume is a constant, there is no net accumulation of
liquid propellant within the volume, hence

Ckate of massn> _ %
accumulatio ot
The net rate of mass into the volume by convection is
- -+ -+
-Vepv-V-pv, -V:- v
¥ pf f pox ox
Therefore the continuity equation can be written as
-

§Q=_ .—»_ .—» ..
3t va fovap

The last two terms represent the divergence of liquid fuel and liquid oxidizer

from the unit volume, and will be called the vaporization rate (not the buming

rate)for our model, w. and w .
f oxX

v
OoX OX

The continuity equation is therefore written as

%p _ ?
Yol Al MV (C-1)
- At A . S
where wf .= vaporization rate of liquid fuel Lsec I J

w = vaporization rate of liquid oxidizer [Lg:l
oxX secC in

Equation of Motion. -

Rate of Net rate Sum of forces
momentum = of momen- + acting on
accumulation tum in system

The rate of accumulation of momentum is given by 3(ov)/3t where, again, the
liquid velocity change is considered to be zero, and hence, the accumulations
of momentum in the liquid phase is zero.
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Considering the liquid fuel and liquid oxidizer separately, the influx of
momentum is given by

Net rate of

v > v e v >
-V v -V.-p.vyv, —=-V9- v Vv
momentum i pv Pf ff P

0OX 0OX OX

The pressure forces and viscous forces remain the same as in equation (A-2a)
of Appendix A, and therefore

-+ -
dt 9 =-v-pvv VPV TV P oxVoxVox T VR VT
(C-2a)
Since
24 o v -+
v pfvaf = Vg pfvf + pf(vf- v) vf

in a manner similar to that of Appendix A. The divergence of momentum
from the fuel is

> - >
V-pfvaf = -vew + gFD,f (Cf2b)
Similarly for the oxidizer
+ 9 v + -+ (C-20)
Pox Vox Vox - Vox "PoxVox ~ Vox(""ox * gFD, ox e
and therefore the momentum equation is
M “+4 - -+
a v - -+
—a% = - V.pvv + Vf“% + VOXwOX—gFD f-gFD ox-gVP—v-T (C-2d)

Expanding the first two terms of the above equation and using the continuity
equation we get

<3

d

- -+ -+ 9 + - > -
P35z =PV IV - (vvw - v ~gFp ~gF  -gVP-7:7(C-2)

[e%)

t

Energy Equation. -

Rate of accumulation Net rate of internal and
of internal and kinetic} = kinetic energy in
energy by convection
Net rate of heat Net rate of work

+ addition - done by system on
by conduction surroundings
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Neglecting liquid accumulation, the rate of accumulation of internal
and kinetic energy is given by

Rate of accumulation
of internal and
kinetic energy

3t (pch + (1/2g7) pv®)

Energy is convected into and out of the stationary unit volume in the
form of internal and kinetic energy of both the liquid and gas phases.
The expression for the net convection into the volume of internal and
kinetic energy is given by

Net rate of internal and kinetic /s t(
- V. —_ 1
energy in by convection > PV, Tt 2 gJ V/ VPV Uf+2 gJ Ve )
" 1
- V'p (U _+==v?)

ox ox' ~ox 24g] ox

Heat addition by conduction as well as work done by pressure and viscous
forces (neglecting gas particle drag) results in an energy equation of the
form

_a__ _l._ 2\ _v. 2 e 1
3t <pCVT+2g]' pv?) v-pvC,T+3 V> fo f\Uf+ 297 Ut

vo v (U +=—v2)-vq
poxvox\ ox 29d]J Vox) d (C-3)

L op? o1l _vopre o
-]_VPV g]_V(TV)

The divergence of total energy (internal + kinetic energy) from the liquid
fuel phase is

1 A 1 _ =2 3
VopgY f(Uf+ 297 vi )= pf £ V<Uf+ 297 v+ (U 29] vE) VP v, (C-4)
since
* —
PeVe - Wy
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and for constant temperature hut allowing for droplet drag

Vv Uf =0

the divergence of energy from the liquid fuel phase is

voov (U +2=vE)=-(U.+ =— L9 5
PeVEN Vs T 2g7 £) =\ 2] f)‘”f D,ff (C-5a)

and similarly for the oxidizer
-
(00t 7750 =~ Ol o7 ) 0 00
Ve poxvox\ ox" ZgI v ox" 2g] “ox ] D,ox ox
Substituting for the liquid phase divergence and letting
_’
Veq = = A VT

the energy equation may be written as

3 1 + 1 g
— (pC T+ = - V. vGT+———v +AVPT - = V:Pv=-—V: (T.v
P~ ZgI P> LN 29] ) J gJ (7-v)
+w U + x> -
ZIK OXO I(FDf f Dox'vox
- (C-6)
where w U —w u U
f ox fe324
Combining equation (C-6) with the continuity and momentum equations,
(C-1, C-2) we get
ST 2 Pp_2 1 - 1 -+
= - . —— e - v - = (v~
pCV Y pC (v V) T+ AV°T ; Vv o] T: VWV + wt(Ut CVT)+I PD,f (v Vf)
+Lp (-—b -+ . 1 i (—; —0) (—» 4)+ (—» —») -+ -;) ;
bl - — e - - 3 —_ - i
J] D,ox v Vox)' 297 '_wf Vf M vf v 'uox Vox v (Vox v < (C-7)

The specific internal energy of each propellant is given by

Uf = CV’fo+AHf

Il

UOX CV ' OXTOX
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for a fuel controlled system, and by

Ue = G T
on CV,oxTox + 1/‘:bs Hf ! <1I)s ( /g)stoichiometric
for an oxidizer controlled system where
Uf = specific interval energy of the fuel including the thermal

energy given by Cv T.., and if the fuel is the controlling
propellant , the chémical energy released when the fuel
reacts with the oxidizer at stoichiometric portions.

U = specific intermal energy of the oxidizer including the
oX . -
thermal energy given by CV o Tox’ and if the oxidizer
is the controlling propellan‘c,xthe chemical energy
released when one pound of oxidizer reacts with a
stoichiometric portion of fuel.

An explanation of the above definitions of the internal energies of the liquid
propellants is needed. Consider first a system controlled by the vaporization
rate of the fuel. In this case each pound of fuel vaporized is instantly burned
with a stoichiometric amount of oxidizer which is present in abundance. The
energy released to the gas phase by the vaporization of fuel consists, there-
fore, of the internal thermal energy (Cv fo) and the chemical energy release
when one pound of fuel is bumed, AH_ ! Vaporization of the oxidizer, how-
ever, contributes only thermal energy (C T ) to the gas phase, since the

chemical energy of combustion has alrea\é‘yoﬁegﬁ considered.

If the oxidizer is the controlling propellant then for each pound of oxi-
dizer that is vaporized, the energy added to the gas phase will be c T
plus the energy released when one pound of oxidizer burmns with a stotSRionetric
amount of fuel. Vaporization of the fuel produces only thermal energy addition
to the gas phase since the amount of fuel that can burn is limited by the amount
of oxidizer vaporizing. Any fuel present in the gas phase, as unbumed pro-
pellant also does not contribute to the chemical energy release, except as
dictated by the oxidizer vaporization.

While the specific intermmal energy of both propellants remains constant,
the specific intemal energy of the propellant combination is dependent on
the local instantaneous vaporization rate of both propellants, and is given by
“ “ 1 &

T _ 2. X )
x—Uf l+<I>)+on l+<1>)

. I _OX _
U, = U, + " UO (C-8)
where & is the local instantaneous ‘7/3 .

t o:.at f t




With the above definitions for U, and U one of the two terms on the

left side of Equation (C-8) is negligibee in thaf'most of the energy added to
the flow is chemlical energy, therefor

f - 1
Ut ~ @, Uf = Uf (1@) for fuel controlling
and (C-9)
wox )
Ut v on = on T_’_-s) for oxidizer controlling

Assuming a calorically perfect gas, the local Instantaneous temperature of the

bulk combustion gases may be expressed as a function of the energy released
by the propellant combination as

_ _ w _(f for fuel controlling
Ut - CpT - Uc ¢ , where ¢ = ox for oxidizer controlling
“
Under steady-state conditions
w
U'co-—_CTo =Uc wco
! P t,o
therefore w w ©
( c/ c,o. c/ ¢c,o
U. =U ——— J)=c T (—F—) (C-10)
t t,o wt/wt'o ) p o wt/wtlo

Nondimensional Equations

Using the same transformations as In Appendix A and with the above
definition of Ut’ we obtain the following transport equations

Continuity. -
r__ W r. W (C-11)
éﬂ'=—V'. p';,".*.]_aIL_LQI w' +| an OXIOI w'
ot T W o a ox
oO - o O
Motion . -
&-;' -» d gﬁc
pl §§"=‘P'(V"V') vl_! __a! V'P'_l——&—r pal Ve 7!
Py an" o O

rw Tan®
_|-2n £0| 1 @—vr) -|-BROXO| iy Gy ) (C-12)
P 3, f f P, ox o .
o (__" _")l_g'o—bl ol (*. ."| )'_’l -'l
3 CDgp,franl vi=vi)lv —vf]_‘3 D Vv Vv ]
- r 8 r

r

p,ox an|.,
! '

8 rd,f d,f d,ox rd,ox
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o prvi- V) T + | | vor -] it ot v
oL _ _ - v
ot! an" o vao PochoI
a W r !
_l 2 l Tl vlvl +| __t.lo_a_n.l ! (‘}"._c _T'\
ranpo v ogI poa £ wt
a2
f o'an . \ 2 0X,0 an LY
K2g]c T D ' wf (vf +’ p a, I ox(V f03:4 v') ]
croa®  -vilvi-vi
|3 p,f Dran (o] ] ' v —Vf) M —Vf (;/’—V'
8gICvTord,f 1rd,f f
3 C_r_ a° (3'—3 )| vy | -
43 pox’Dano, ox OX . - (C-13)
8 gJC Tr r' OoX
v'o d 0374 d,ox

Following the approximations of Reference (1) and noting that

, wf , oran , N ' mfwfran

~w lt) =15 %, el f0) =L, £6v)
¢ ‘

-po o
wox o} an moxvvox an mox an I
| -
= = £
£ =£ +£
t f 034

the final nondimensional transport equations are

Continuity. -

a ! t |—’| i (C_14)
S‘%—= -Vt p'v +£tf(y)wt




Motion. -

-»
3v’ - 2 1 -
e LWV - = 9P - Jf(y) V- T
-+ +
_ 1t 1 - oyt £ C"'].S)
(v'-vi) wp S10) - @' £ £ (
(-’ -+ 4
) Pl \‘J _‘v'f)l ‘V’ ._,“VYf
f ry £
-+ 79 -+
(vl_vl ) VI_VI
5o l «
ox rd,ox
Energy. -
A - -+
p| S%_ = - pl (Vl_ VI)TI +gV|2T|f(,y) _I.y_ll P'9'. v
-+ w'c .
=lyo-DI ) T (V) + L Ewily 2= - T
t

+(121—1lz fly) [.cfw%@%-&)%s @ @ -3')2] (C-16)

00X OX OX

V=i (7=

+ytr-1) {8,0'— vy
’-\’,l_‘_;l (-\"/'-tV')

o o O

oX oxX

Equation C-16 assumes that the steady state and Instantaneous 07'5
values are both on the same side of (973 stoichiometric.
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Annular Model

The transport equations for the bipropellant annular model, following
the assumptions of Appendix A, are

Continuity, -

3p /Bv'e Bv'z 30" 30’
at' - ‘P\a_e'T +_a?> _VG 36’ _Vz oz’ +=‘:oxwoxf'(‘y)+£fwf t) (C-17)
Momentum (@-direction). -
1 1 2.1
5t TS S U I Sl |
P 3e TP T Ty e Y13 30® (C-18a)

/ﬁf ﬁox )
-v[wil +w' £ ]f(‘y)—t : + Pl VLV
6 OX 0X \rd,f rd,ox' ‘ 6! 8

Momentum (z-direction). -

oV, 1,3P"
=-p'v' 2 g - ‘y’ 3o f(‘)’)(V "V )‘Sf ) v VoV ox z)£oxwox

Ivz-vf’zl(vz—vaz) L, p,""z"viax,zl("fz""oxg) (C-18b)

[ ] ]
T4,f oX T4, ox

__Bf P'

Energy. -
av'

o ai=-p' (v 557+ v 52 ) WD) e-z “lr- 1'P<ae' .

S fovy @ /av! \2 dv! av'
4 1770 8
+?3—|7 (7—1)lg£( Y-E > +Lazlz/" _ael 3zt —] ( )

Sw' fly)y - (€ £ w' '
+Lw fhly - (€ W+ 2P 0T

+ g}%;&f(y) {"\"f""';’ [v'ez +(v' -v' )2]+ w [v'"+ Vz—vOX z)?I}
[v'2 + (vz—v ) ] [v'62+(v'z— ) ]

+yly-1) p' {»3 +5 r }

d,f oX

(C-19)




z-Derivatives (integrated Equations).~ Based on the same
assumptions as in Appendix A, the Integrated equations are

Continuity
- av; 30" 4 27 2r
0=2m S+, 32 | +H)E, £wfd6+f(y)élox gwoxde
Momentum - z direction
av! ,
0=21 =2 v +27% 2B
dz z dz
VAL 2m
+f(’)’)(V| - V )'yf £w dée +f('y)(v’—vOX . T)xj‘ woxde
v' -v! V' -vt ) v'=-v (v' -v )
+2"‘Bf z f,r.z z f,z +2"‘Bo z oxrzl z oxz
d d
Energy
av' 2
O——21r—-— v —j ve—a@de - 0-1) 557 J”Pde
27 av'6 2m
- (y-1) J; P55 d6 +£tf(-y)7£ w' de

2™ 27
- fly) [J! j'w T‘d9+£fwTd6_|

uf(y) {£ j' w vg’+(v, - Vi 1de
2 .
+£ox"r wZ)x [Ve' +(vz—vo ,Z) 149
2 af2

y(y-1) '[v'2 (vz—v% ) 1 de
.3 2 s/3 .
=2 [p'lvis(v, v )]de-JL

d,ox o

(C-20)

(C-21)

(C-22)
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APPENDIX D
COMPUTER PROGRAM DESCRIPTION

The bipropellant combustion instability model developed in Appendix C
has been programmed in Fortran IV language and checked out for the CDC
6600 computer. The spray distribution model developed in Appendix B is
contained in a separate computer program and has been checked out on the
CDC 3600 computer.

The mathematical model, represented by equations (C14), (C15),(Cl6),
is used for the analytical determination of the minimum pressure perturbation
required to develop into a standing tangential instability wave within the
combustion chamber.

The numerical methods used in the computer program can be illustrated
by following the steps of the integration cycle. The first step determines the
coefficients of the z derivatives followed by the actual determination of the
z derivatives, Bv'z/Bz', d3p'/32Z, and 3 T'/3z. Once these values are known at
time tx'x' partial derivatives with respect to t are then determined at trll'

Employing the first order predictor relation:

13p'
ro=p' +A :
Pntl ~ Pn t 3t n (D1)

the solution is approximated at the next step in time.

Using the approximated values at t;_l the partial derivatives with respect to

+1
theta are then computed with the relation:

[ — A
pn+1 ,m+1 pn+l ,m=1

é_Q_I_. — (DZ)
66n+1 2408
where p ;1+1 el o'| (n+1) At, (m+1) A 8’| , at each node around the annulus.

Once the theta derivatives at each node of the annulus at time tln+1 are

known, z derivatives and t derivatives to are recalculated and an implicit

formula is used to iterate the approximated values at tr'1 The implicit iteration

+1°
formula is:
pl = pl + At'_a‘g_"

n+l,m n,m ot!
n+l,m

, for1 <m < ND (D3)




where ND is the number of nodes. With the present Dynamic Science instability
program the iterations are continued until convergence {s achieved or the maxi-
mum number of iterations (4) is exceeded. The computations are then con-
tinued to the succeeding step.

The derivatives in the axial direction are determined with the assumption
that the total mass, momentum, and energy in the annulus remain constant.
Furthermore, it is assumed that these derivatives are independent of r and 9.
These assumptions lead to equations (C20), (C21), and (C22), which permit
evaluation of the derivatives taken with respect to z at each time step.
Equations (C20), (C21), and (C22), may be represented by a system of nonlinear

algebraic equations to be solved at each step (A t') in time, as follows:

a . x, +a.x =cC

171 22 1
a4x1 +an2+a6x3 =c2
a7x1 + a8x3 = c3

where, 3y
X = —=

1 dz'
- 9p!

XZ 3z’

_ oT

XS T dz!

Using the relation

2m
sp' _, 9oT'  3p' Y
2m S, = 2m +az,£Td6

the coefficients are:

a1 = m
a2 = 2m vz
a4 = 27 v!
1 2m
ag = £ T'd 6"
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and;

2n [y

27
-1) [ P dO"
@]

2rv!
A

27 T
\ I 1 '
fly) £f£ wdd +f(y)£oX£woxd6

2 27

0X,2 O

SE) AV e [ W8 —f0)av: & [ w de
! o

_ZﬂﬁflAvflzl Avi ) 2m b [av! . L AV .z
] ]
rd,f I.d,ox
2m ave
-J‘pve ﬁde ('y—l)‘(J:Pa'F de
2m

) ' 49"
+ tf(y)yj;wcde
27

-to)ls [ @ Tder +& [« T'de]
(e} O
2m
el ey s Julvgrovy 1ao

27
£ 1 12 12 '
* oX 'J; wox[ VG +Avox,z] d6

2m 3/2
+yly-1) f——- jp[v'zmv'z 1 de
d fo

5 2m

+£< I p[V|2 +Av|2 ]3/2 de
r 0 OX, Z
d,ox o




The solution of the above system is:

o . 5% Ze%
X, = 2 ) g
L= 3% %6
4 2 ag
. _ Cl" alxl
2 a,
. - BTN
3 ag

For the droplet distribution modification an additional semi-infinite
integral evaluation was necessary to evaluate the vaporization response, ',

as defined by Equation (B7). Since the integrand is an analytic function of r
and hence can be evaluated at the roots of the Laguerre polynomials, Laguerre-
Gaussian Quadrature formulae were used for the integration. The Laguerre-

Gaussian formulae has the following form:
o m
-X
J e fx)dx =2 H f(x ) +E. (D4)
o)
. th th .
where x1 is the I~ zero of the m order Laguerre polynomial, Lm, and

_ (ml1)®
H, = L' (xi)Lm

0 (D5)
&)
and

g - ol £2M iy gct <,

(2m!)

The Gaussian quadrature formulae require evaluation of the integrand at

(D6)

roots of the Laguerre polynomial as opposed to Simpson's rule which is normally
used with equally spaced abscissae. However, since the integrand can be

evaluated at the roots of the Laguerre polynomials this method has a thh order
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term while an equally spaced evaluation of the same order has an mth order
error. Therefore, greater accuracy can be obtained with fewer points and
hence a significant improvement of computational time required to evaluate
Equation (B7) can be made. The method is more suited for semi-infinite axis
than an equal interval evaluation since the formula is specifically designed
for the semi-infinite interval.

Figures D-1 and D-2 illustrate the common locations used in the
combustion instability program. Figure D-3 describes the input card format
required to run the program. Figure D-4 is a complete listing of the computer
program used to generate the results of the drag studies and the bipropellant
studies. For a more detailed discussion of the combustion instability |
program refer to the final report of NASA Contract NAS 7-366, Reference 2.

Following the computer program listing, Figures D-5 and D-6 show a
sample case input and output. The complete listing of the output for the given
case has not been included due to its length. The several steps of the inte-
gration have been included to display the typical step printout, as well as

a pressure history summary.




Cell Description Cell Description Cell Description
1 Initial Time (TI) 41 V:z (vVZz) 61 (SCR)
2 | RKTIME (RKT) |42 |f¢y) (FGAM)| 62 |y(y-1)/2.0 (SIP)
3 | Step Size (H) 43 Ja, =27 @AQ) |63 Jy-1) (s1P2)
4 | Step Size/2 (HO) 44 a, = 2m v'z (A(2)) 64
5 | Min Step  (HMIN) | 45 65 |g*fty) (BC)
6 Max Step (HMAX) |46 a, =2mv! (A(4)) 66 [4/3*Ff(y) (BZ)
7 | Ho/2. (HzD2) (47 |a, = %E;'de'(A(s)) 67 |Rey (REFO)
8 Min Error  (EMIN) {48 a. = 2n /y UT(A(6)) 68 Red,ox (REFD)
9 | Max Emor  (EMAX) (49 a, =(-1)[p'd0" |69 [Re d,ox)k (SRD2)
10 | Max CY ERR (E1) 50 fag =21V’ 70 |2(DTH) (D2)
11| Weight  (WI() |s1 | ) | 71 |oTH)? (DSQ)
30 | Weight (WT(20))] 52 |c, ce) | 72 (Av'ox,z)z (DELIV)
31 | Time Stop  (TSTOP) | 53 |c, (C@)) |73
32 | E=8 +& (L) 54 |Theta Step (DTH) | 74 [£, (XLF)
33 55 {3v'/3z x@w) |75 |&_ (X1.0)
34 Parameter, J (XJ) 56 |3p'/dz (X(2)) 76 Av%lz (VFZ)
35 57 |3aT/3z x@)) | 77 Moy 2 (VOZ)
36 |y (GAM) | 58 78 | & (DRAGF)
37 Init. Pres. Dist.(ap)| °° (Red.f\)\/l (SRD) | 79 | Fox (DRAGO)
38 60| .6*Sc**1/3 (SCB) | 80 (SCRO)
39 |Schmidt No. (SC)
20 |(avy )*  (DEL2V)

FIGURE D-1 - COMMON MAP (FC REGION)
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Cell Variable Dim. Description

1 P(1,1) (2,161) pressure
323 DPTH(1, 1) (2,161) 3P/20
645 DTT (1,1) (2,161) 3 T/3t'

967 | DTTH (1,1) (2,161) 3 17/30

1289 | D2TTH (1,1) (2,161) | 32 T/a@e
1611 DRHOT (1,1) (2,161) dp/3t’

1933 | DRHOTH (1,1) (2,161) 3p/36'
2255 DVT (1,1) (2,161) v /3!
2577 DVTH (1,1) (2,161) 3v! /28"
2899 | D2VTH (1,1) (2,161) | 3%v!/3g'*
3221 | wz(1,1) (2,161)
3543 wi{(,1) (40,161) Burning Rate

(RC REGION)

1 T (3,161) T', Temperature
484 RHO (3,161) p': Density
967 \' (3,161) v; Velocity

(BE REGION)
FIGURE D-2. COMMON MAP (BC REGION), (BE REGION)
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C MAIN PROGRAM FOR COMBUSTION INSTABILITY MODEL OF DSC

DIMENSION FC(B80)s NM(2U)s BD(239361s14)9BE(3536193)sV(35361)

1 sART(B00s3)sP(25361)s RHO(35361)s T(3s361)s AE(92510)

2 » XZIX(1086)

DIMENSION DTT(2+361)sDTTH(23361)sDRHOT (29361)sDRHUTH(Z29361)

1 DVT(2+361)sDVTIHI(29361)sWw(69361)9sWZ(23361)sDPTH(2s361)>

1 D2VTH(2s361)s D2TTH(29+361)

COMMON/E/FCsNM/B/BDsBE
COMMON ARTs AB» XZX
EQUIVALENCE (BE(1)sT)s (BE(1084)sRHO)s (BE(2167)s V)
EQUIVALENCE (BD(1)sP}s (BD( 723)sDPTH) s (BD(1445)sDTT))

1 (BD(2167)sDTTH) s (BD(2889)sD2TTH) s (BD(3611)9DRHOT )

2080 (4333) sDRHOTH) s (BD(5U55) sDVT ) s (BU(STTT)sDVTH) s (BDL6499) sD2ZVTH) »

3 (BD(7221)sW)s (BD(9387)s WZ)

EQUIVALENCE (FCU1)s TI)s (FC(31)s TSTOP)s {(NM(&4)s MGAM)s
(FC(3)y H)s (NM(5)s MPTN)s (NM(3}s MALP)s (NM(13)s 1)
(FC(38)s ZIP)s (FCU32)s XL)s (FC(34)s XJ)s (FC(35)s DELV)s
(FC(36)s GAM) s{NM(7)sNSW)s (NM(14)s ND}s (FC(33)s RED)

s (FC{T4)sTL)s (FC(75)s THYs (NM(17)s NJ)s (FC(39)s 5QC)

£ VN

oy

12
5 I
NN = 1
CALL REED
CALL RSET
C SUBROUTINE ORG INITIALIZES PRINT COUNTERS AND SETS UP THE NECESS
C ARY INTEGRATION TERMS
CALL OROG
C SET UP COEFFICIENTS TO SOLVE FOR Z DERIVATIVES
10 CALL ASET
C SUBROUTINE ZDIR SOLVES FOR Z DERIVATIVEO
CALL ZDIR
C NOW SOLVE FOR T DERIVATIVES P
CALL T7TDIR
C NADM PERFORMS THE ACTUAL NUMERICAL INTEGRATION
CALL NADM (DRHOTs RHOs 1)
CALL NADM (DVT » V,y 2)
CALL NADM (DTTs Ts 3)
CALL THPRED
C NEXT TEST FOR PRINT POINT
IF(MPTN) 6Cs 504y 60
C BRANCH TO 50 IMPLIES PRINT POINT OBTAINED
50 CALL AVGE
WRITE(6997) ART(I91)sART(I92)sNM(1)ys(FC(JIM)sIM=DD957 )
97 FORMAT (6HOTIME=F945 91UXsl1T7H(PMAX-PMIN)/PAVE=F9e5s10Xs3HIT=1Z
1 9//7+420Xs42HAXTIAL DERIVATIVES FOR VsRHOs AND T eseseee s/ 9
2 217Xs3E16e7 o// 98X s 1HP s 17X 93HRHO» 15X 1HT 917X
3 97HV THETAs»11Xs6HW FUEL12Xs5HW OXae /)
WRITE(6998) (P{lsJ)sRHO(1sJI)sT(19J)sVIleJ)sW(3sJ)
1 sWi{5sJ)s J=1sNDsNJ)
98 FORMAT (Fl4e592F18459E22eb9F14e59F18,5)
WRITE (64980)
980 FORMAT(1HOs///)

1
1

52 1 = I+1
C TEST FOR TIME STOPe.
IF (TI - TSTOP) 60y 55 55
C STORE PRINT POINT FOR PLOTTING
55 ZIP = ART{(1,2)
[ = I~-1
NN = NN-1

WRITE (699G) (ART(Jsl)e ART(Js2)s ART(JIs3)sJd =1s1)

FIGURE D-4. BIPROPELLANT PROGRAM LISTING




C
C

99

60

1

FORMAT({1H196X 2 4HTIME 15X 16HIPMAX-PMIN)/PAVE 94X BHPRESSURE
s/ /9(3E20.8))
CALL PLOTTING ROUTINES
GO TO 5
SUBROUTINE SHIFT UPDATES TERMS INVOLVED WITH INTEGRATION-
CALL SHIFT
GO TO 10

END
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99

SUBROUTINE REED

DIMENSION FC(80)s NM(2VU)s BD(29361914)9BE(3936193)sWT(20)

1 +BCD(12)

COMMON /E/FCsNM /B/BDsBE

EQUIVALENCE (FC(1)9T)s (FC(6)sHMAX) s (FC(B)SsEMIN)
(FC(9)sEMAX)s (FCl11l)s WT(1))s (FC(31)s TSTOP)»(FC(32)sXL)s
(FC(33)sRED)s (FC({34)sXJ)s (FC(35)yDELV)s (FC(36)9sGAM)»
(FC(3T7)sAP)s (FC(39)95C)s (FC(41)s VZ)s (FC(54)sDTH)

s {FCUT4) s XLF) o (FCUT5)sXLO) s (NM(17)sNJ)

2y (FC(T76)sVFZ)s (FCU(TT7)s VOZ)s(FQ(HT)PREFD)s (FC(68)sREOD)

» {FC(78)sDRAGF) s (FC(79) sDRAGO)

EQUIVALENCE (NM(T7)sNSw)s (NM(9)sMP)s (NM(11)sNO)s (NM({14)s ND)

[ R G N S UL S

EMIN=,0001

DO 10 I = 1,20

WT(I) = 1.0

READ (5990) (BCD(I)sI=1»12)

FORMAT(12A6)

IF( EQOFs 5) 9951

WRITE (6491) (BCD(I)s1=1912)

FORMAT (1H1s38Xs41HDYNAMIC SCIENCE BIPROPELLANT INSTABILITY
1 »7HPROGRAM +///512A6 )

READ (5992) APsXLF s XLOYREFDIREODsVFZsVOZ +sDRAGFSDRAGO
1 sXJ9sGAMsSCsVZsTyHMAX s TSTOP

FORMAT(6E1248)

READ (55»94) MPsNDsNOsNJ

FORMAT (6112)

XL=XLF+XLO

XND = ND -1

DTH = 64.2831853071/XND

TSTS=HMAX/DTH

WRITE (6993) APsXLFsXLOSREFDsREODsVFZsVOZsDRAGFDRAGO
1 s XJ9sGAMySCoVZsTsHMAX 9 TSTOPsDTHeTSTS
FORMAT(//947HOINITIAL AMPLITUDE OF PRESSURE DISTURBANCEsAP =
sF9eb9////777951X920HSTABILITY PARAMETERSs// 51 Xs4HFUEL 98X
y8HOXIDIZERs// /94X 924HBURNING-RATE PARAMETERsL 921X9F943>
33X9FFe39/ /94Xy B8HRE SUB D9s37X9sFG,093XeF9409//

s4 X9 26HRELATIVE VELOCITYs DELTA Vel9XsFQe49s3XsFFebs//

34X 16HDRAG PARAMETERYD 929X 9F94293X9F9e2 /777777777
913X93HJ =9E12e59/ 99Xy 7THGAMMA =9F7e49s/316H SCHMIDT NQOe =
sFT7ebo/9yTX9s9HV SUB Z =9F9Qebs//////

s15H INITIAL TIME =9F9e¢692UX912HTIME STEP =3F9e69/

s 15H FINAL TIME =9F9e¢6920X912HTHETA STEP =9F9.69/
934X 922HTIME STEP/THETA STEP =9sF9e6s//)

OO -NoOU S WN

MP=2 FUEL OR MP=4 OX, CONTROLS BURNING

WRITE(6s94) MPsNDsNOsNJ
WRITE(6+95)

FORMAT(1H1)

RETURN

SToP
END




OO0

SUBROUTINE ASET

THIS SUBROUTINE CALCULATES THE COEFFICIENTS FOR THE AXIAL
DERIVATIVE PACKAGE AND ALSO INITIATES THE w ARRAY AND THE wZ
ARRAY .

DIMENSION FC(80)s NM(2U)s BD(2+361914)sBE(3+36193)9V(3+361)
1 sART(800+3)9P(29361)s RHO(39361)s T(3+s361)y AB(92510)
s XZX1{1086)
sPVD(361)sBVD(361)sDD(361)BZD(361)sAZ(361)s Alll)s C(3)
DIMENSION DTT(2+361)sDTTH(23361)19DRHOT (2+361)sDRHOTH(29361)»
1 DVT(29261)sDVTHI(23361)9W{69361)sWZ(29361)sDPTH(29361)
1 D2VTH(2+361)s D2TTH(2+361)

COMMON/E/FCsNM/B/BD»BE
COMMON ARTs AB»s XZX

EQUIVALENCE (BE(1)sT)s (BE(1084)sRHO)s (BE(2167)s V)

EQUIVALENCE (BD(1)sP)s (BD( 723)sDPTH) s (BD(1445)¢DTT)o
1 (BD(2167)sDTTH)» (BD(2889)sD2TTH)s (BD(3611)9sDRHOT)»
2(BD(4333)sDRHOTH) » (BD(5U55) sDVT )+ (BD(5T7T77)sDVTH) s (BD(6499)9D2VTH) »
3 (BD(7221)sW)s (BD(9387)s WZ)

EQUIVALENCE (FC(33)s RED)s (FC{39)s SC)s (FC(35)s DELV)
1 (FC(32)y XL)s (FCU34)s XJ)s (FC(40)s DEL2V)s (FCl41)s Vi)
2 (FCl42)s FGAM) (FC{36)s GAM)s (FC(43)y A)s (FC(51)s C)
3 2{FC(59)s SRD)s (FC(60)sSCB)s(FC(H61)sSCR)I» (FC(B2)9SIF )
4 (FC(38)s ZIP) »(FC(64)9BB)s(NM(14)s ND)
S59(FCI63)sSIP2)s (FC(65)eBC)y (FC(H6)9BZ)
» (NM{4) s MGAM) s (FC(69)s SRD2) s (NM(9)sMP)
s{FC(74)s XLF)s (FC(T75)s XLO}s {(FCi{T76)sVFZ)s {(FC{T77)s VOZL)
s (FC(78)9sDRAGF ) s (FC{T79)sDRAGO)»(FC(6T7)s REFD) s (FC(68)»RECD)
s (FC(72)s DEL1V)s (FC(80)s SCRO) ’

NN

Mol o BENR o]

IF(MGAM) 10y 10y 12
10 J =1
LL
LJ
ML
K =1

n uun
w

12 d = 2

—
[
nwu un
e}

13 DO 40 I = 1s ND
BVD(I) = RHO(KsI)¥* V(Ksl)
BZD(I) = BVD(IIX¥DTTH(JH1)
PVD(I) = P(JsI)%®DVTH(JsI)
IF(RHO(K»I)) 60+20,20
20 WILLsI) = (260 + SCB*SQRT (RHOUKsI))*(VIKsI)%%¥2+ DEL2V)*%¥,250%5RD
1 y/SCR
W(LJsI) = (240 4+ SCB*SQRT (RHO(KsI ) )*(VI(Ks])*¥2+ DELIV)¥%,250%SRD
12)/SCRO
W(JsI) = W(MLsI}
AZ(T) XLE*¥W{LLeI) + XLO¥W(LJsI)
DD(I) VFZRXLF*W(LLsI) + VOZX*XLO*¥W(LJsI)
4U WZ{JdsI)= XLH¥GAM*W(Js]) —(XLO¥WI(LJsI) + XLF*W(LLsI))I*¥T(Ks»I) +
1 SIP*{XLF%¥(V(KsI)*%#2+DEL2V)*¥W(LLy ) +XLOX¥(V(Ks I ) *¥%2+DEL1IV)*¥W(LJsI))

A(5)=WEDD(TI(Ks1l))/GAM
A(T7)1=(GAM=1«)*WEDE(P(JUs1})) 3
6
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50

(1) = FGAM®WEDS(AZ)
Cl2)=—FGAM®WEDS (DD}
C{3)=FGAM*¥WEDE(WZ(Js1))—(GAM=-1,)*WEDS(PVD)-WEDS(BZD)
IF({DRAGF+DRAGO «LTe 1leE—20) RETURN
R SUB DsF = R SUB D»0OX = 1.

Cl2)=C(21-6¢28318531%{DRAGF*ABS(VFZ)*VFZ+DRAGO*ABS(VOZ)*V0Z)
DO 50 I=1sND
PVDUI)=RHO(KsT ) ¥ (V(KsI)X¥2+VFZ¥%2)¥%*]1,5
BZDUI)=RHO(K s T ) ¥{V(Ks I ) **¥2+VOL%¥2 ) X*],5
C{3)=C(3)+SIP2¥(DRAGF*WEDS(PVD)+DRAGO*¥WEDS(BZD) )

RETURN

6V WRITE(6921) FC(1)s (P(1sJ)sRHO(19J)sT(1lsJ)sVilsd)s

1 WlsJ)sWZ(1sJ)s J=19ND)

21 FORMAT(1HOs1E20.8/(6E18.8))

sTOP
END




SUBROUTINE AVGE
DIMENSION FC{(80)s NM(2U)s BD{2+361914)9BE(3336193)sV(3+361)
sART(80093)9P(29361)s RHO(39361)s T(39361)s AB(S92»10)
s XZX(1086) *
DIMENSION DTT(29361)sDTTH(29361)sDRHOT (29361)sDRHOTH(29361)
DVT(29361)sDVTH(2+361)sW{6+361)sWL{(29361)sDPTH(2+361)
1 D2VTH(2+361)y D2TTH(2s361)
COMMON/E/FCsNM/B/BDsBE
COMMON ARTs ABs XZX
EQUIVALENCE (BE(1)sT)s (BE(1084)9sRHO)s (BE(2167)s V)
EQUIVALENCE (BD(1)sP)s (BD( 723)sDPTH) s (BD(1445)sDTT )y
1 (BD(2167)sDTTH) ¢+ (BD(2889)9sD2TTH)» (BD(3611)sDRHOT)
2(BD{(4323)sDRHOTH) s (BD(5U55) sDVT)s(BD(5777)sDVTH) » (BD(6499) »DLVTH) »
3 (BD(7221)sW)s (BD(9387)s WZ)
EQUIVALENCE (FC{L1)sTI1)s (NM(13)y 1U)
1 » (NM{14)»s ND)s (NM(15)9sN1)

[aS

—

XMA = P(1s1)
XMI = XMA
SUM = XMI
DO 10 1 = 24Nl
SUM = SUM + P(1ls1])
IF(P(1s]l) — XMA) 551053
3 XMA = P(1,1)
GO TO 10
5 IF(P(1sI) — XMI) 75 10, 10
7 XMI = P(1lsl)
10 CONTINUE
XN = N1
SUM = SUM/XN
ART(IUs2) = (XMA - XMI)/SUM
ART(IUs1)Y = TI

NN = N1/4 + 1
ART(1Us3) = P(1,sNN)

RETURN
END
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99

40

42

60

70
80
85

87

95

98

1
2

SUBROUTINE NADM(YP,YsKK}
DIMENSION YP(722)sY(1083)s FC(BO)sNM{20)9WT(20)
COMMON /E/ FCsNM
EQUIVALENCE (FC(3)sHbs (FC{11)sWT)s (FC(10)s ELl)s (FC(9)s EMAX))H
(FC(8)s EMIN)» (NM(2)s INDR)s» (NM(T7)s NSW)y (NM(4)s MGAM),
(NM(3)s MALP)s (NM(20)sNOD)

MGAM==1»0s1 INDICATES PREDICTOR-RUNGE-KUTTA OR CORRECTORPHASE
MALP-INDICATES PERT OF RUNGE KUTTA PHASE

NSW— PRINT SWITCH FOR ERROR INDICATION

E1 - CONTAINS MAXIMUM ERROR FOR EACH CYCLE

YP - ADDRESS OF DERIVATIVE ARRAY

Y - ADDRESS OF THE ORDINATE ARRAY
********%**********************

IF (MGAM) 4C, 40, 60

336 3 FE I 26 I B3 K I I F WU IR H R KK

PREDICTOR
IZZEXITETETLEEETLLEEE L L L L L L LN L L0 8 8
DO 42 1 = 1sNOD»2
K =1+ 1/2
Y(K+2) = Y (K) + H¥YP(I)
GO TO 99
[ZXIZZEXELLTE LTI ST E LS LS L L 8 80

CORRECTOR
36 9 3 3t 3 3 3 36 ¥ I 3 I ¥ 36 36 36 3 I I 6 3 3 336 33 ¥ 33 3 3¢ 33
DO 98 I = 1sNOD»s2
K =1 + 172
Y(K+1) = Y(K) + H*YP(I+1)
E = ABS (Y(K+1) — Y{K+2))*WT(KK)
IF(Y{(K+1)) 70, 80, 70
E = E/ABS (Y(K+1}))
IF( E - EMAX) 85s 95, 95
IF(E -~ EMIN) 98, 87s 87
3 3 I 3K It 36 33 I I 3E I I It M 3 36 I I I I XK 3 36 3 K KX %
RELATIVE ERROR CHECK-BRANCH TO 99 INDICATES ERROR SMALLER THAN
ALLOWABLE ERROR-ADDING ONE TO INDR INDICATES VARIABLE WITHIN
ERROR ALLOWED :
T2 ETTTEFETE T LSS ELS SRS RS LR L L R L 2 83
INDR = INDR + 1
GO TO 98
336 96 3 36 A 3 A 3 3 3 3 I 36 6 36 36 M 3 3 36 I3 36 I Xk
ONE HUNDRED 1S SUBTRACTED FOR EACH VARIABLE LARGER THAN THE
ERROR LIMITS
96 I 3 96 3 36 I 3¢ 336 I 3 I 36 36 36 3636 I 3 3 3} KK IR H
INDR = INDR - 100
I I 3 I 3 3 36334 36 36 36 336 36 I I I 3 I 36 36 I 36 3 3 K% ¥
E1l CONTAINS MAXIMUM ERROR OCCURING DURING THE CYCLE
9 3 3 36 3 3 3 36 3 3 3 36 336 3 K 3L 3 3 36 6 3 3 ¥ 36 3 3¢ 3¢
E1 =AMAX1(Es E1)
RETURN
END
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SUBRQUTINE ORG
DIMENSION FC(80)s NM(20)s W(20)
COMMON /E/ FCs NM
EQUIVALENCE (FC{1)9oT)s (FC(2)9sRKT)s (FC(3)sH)s (FC(4)sHO)
1 (FC(5)s HMIN)s (FC(6)9sHMAX)s (FC(T7)sHZD2)s (FC(B8)sEMIN)
2(FC{9)sEMAX)s (FC(11l)eW)s (FC(10)sE1l) s
3 (NM(1)sIM)s (NMU2)sINDR)s (NM(3)sMALP)s (NM(4)sMGAM)
4 (NM(5)sMPTN)s (NM(6)sMPTS) s (NM{T)sNSW)s (NM(8)sNCOU)»
5 (NM(9)sMP)s (NM({10)sNV}) » (NM(11)s NO)
T 36 I 36 K I K 34 333 I I 36 I 3t 3 3 K336 I I I 36 I I I 3 3 3 I I I I I I I I K I I I W I KX
DESCRIPTION OF THE LISTED VARIABLES
T - THIS CELL CONTAINS CURRENT INTEGRATION TIME
RKT - START TIME OR PREVIUUS BEGINING OF RK TIMS
H - CURRENTLY USED STEP SIZE IN COMPUTING
HO - STORED STEP SIZE
HZD2 - HALF OF STORED STEP SIZE
HMIN - MINIMUM STEP SIZE
HMAX - MAXIMUM ALLOWABLE STEP
EMIN - EMAX MIN AND MAX AOLOWABLE ERROR
W — ARRAY OF WEIGHTS TO WEIGHT ERROR CINSIDERATION
IM - NO OF GOOD POINTS FROM ReK START
INDR - INDICATOR FOR ERROR OQUTSIDE OR WITHIN MIN MAX TOLERANCE
MALP - COUNTER FOR ReK INTRRMEDIATE POINTS
MGAM PHASE INDICATOR —-1sPREDICTOROsR.K 1s CORRECTOR
MPTN PRINT COUNTERs CURRENT
MPTS - TOTAL NO OF POINTS IN PRINT INTERVAL
NSW — PRINT INDICATOR IN NADM ROUTINE
NCOU - TOTAL NO OF COMPUTED POINTS DURING INTEGRATION CYCLE
MP - POWER OF 2 VARIATION FROM HMIN TO HMAX
HMAX s MP, NOs» NSWs NV AND W({I) MUST EITHER BE READ INTO CORE OR
INITIAIZED BY AN ADDITIONAL ROUTINE '
362 3 3 I I 3 3 K 33 3 I K I I 6K I I I I I I K I I I I I I I I I WX %

HMIN = HMAX/ 2o %**MP

i

HO = HMIN
HZD2 = HO/2.0
H = HO

RKT = T

El = 0.0

32 3 3 I 3t I 3¢ H A I W I I 3 I I I IE I I I I I I I I I I I I I I I IE K I 3 N I I I I I I K N X

FIXED POINT INITIALIZATIONS
LR AR IR S e T R Y Y I R T2 2

IM = 0
MALP = &4
MGAM = -1
MPTN = 0
MPTS = NO%2*¥MP
INDR = 0O
NCOU = 0

33 36 3 I 3 I A 3 I I I I 3 I A KWW I I I I I I K I I I 3 I I I I I I I I I I I I KWK KR

MPTN SET TO ZERO TO PRINT INITIAL CONDITIONS
2636 063 309636 302 3630302 03I I I I3 6T I I I NI I KRN NN

RETURN
END
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SUBROUTINE RSET

DIMENSION FC(80)s NM(2U)s BD(29361914)sBE(3+361+3)sVI(3+361)
1 »ART(800s3)sP(29361)9 RHO(39361)s T(35361)s AB(92»10)
2 » XZX(1086)

DIMENSION DTT(29361)sDTTH(29361)sDRHOT (29361)9DRHUTH(29361)
1 DVT(29361)sDVTH(2+361)sW(69361)9sWZ(29361)sDPTHI293061)>
1 D2VTH(2+361)s D2TTH(29361) s A(1ll)}

COMMON/E/FCsNM/B/BD»BE
COMMON ARTs ABs XZX

EQUIVALENCE (BE(1)sT)s (BE(1084)sRHO)s (BE(2167)s V)

EQUIVALENCE (BD(1)sP)s (BD( 723)sDPTH)s(BD(1445)sDTT)>»
1 (BD{2167)sDTTH) s (BD(2889)sD2TTH) s (BD(3611)sDRHOT) >
2(BD(4333)sDRHOTH) » (BD(5055)sDVT ) s (BD(S5TT77)sDVTH)» (BD(64IF) »LIVTIH)»
3 (BD(7221)sW)s (BD(9387)s WZ)
4y {FC(59)sSRD)s (FCLH60)9SCB)Ys (FCIBH1)9SCRYs (FCI35)»DELV) s
5 (FCC40)sDEL2V)s (FC(64)sBB)s (FC(65)s BC)s (FCL66)9BL)
6 (FC{33)y RED)s (FC(39)s SC)s (FC(32)s XL)s (FC(34)y XJ)>»
7 (FCl42)s FGAM) 2y (FCLE2)sSIPYs (FC(B3)9S1P2)s (FC(38)s21P)
8 s (FCl43)s A)s (FCL&Ll)s VZ) s(FC(36)sGAM) s (FC(37)9AP)
9 s(FC(67)s REFD) »(FCLEB)IREOD)s (FC(69)9s5RD2) s (FC(T6)sVFL)
EQUIVALENCE (NM({14)s ND)s (NM(15)sN1)s (NM(20)sNOD)s (FC(70)5D2)
1y (FC(71)s DSQ)s (NM({19)s NODI1)s»(NM{20)s NOD)
2 s(FC(54)y DTH)s (NM(12)s NZ)
3s (NM({16)s NCD)> (FC(80)s SCRO) s (FC(72)sDEL1V)
4 9 (FC(T77)s VOZ)
5 o (FC(78)9sDRAGF)» (FC(T79)sDRAGO)

SET UP INITIAL ARRAY

A{l)=6428318531
Al2)1=A(1)*VZ

Al4)y=A(2)
Al6)1=A(1)/GAM
Al8)1=A(2)
GAM1 = GAM + 1.0
FGAM = SQRT ((2e¢0/GAM1)*¥¥(GAM1/(GAM-1.0}))

BC = XJ*FGAM
BZ = 143333333333%BC
DEL2V = VFZ¥%#2
DEL1V = VOZx%#%2
SIP2= GAM¥X(GAM - 1.0)
SIP = SIP2/240
ZIP = GAM + SIP*DEL2V
SRD =SQRT (REFD)
SRD2=SQRT (REOD)
SCB = o6 %#S5(C#%#,33333333333
SCR = 240 + SCB*SQRT (VFZ)*SRD
SCRO= 2.0 + SCB*SQRT (VOZ)#*SRD2
D2 = 2,0%¥DTH
DSQ = D2*DTH/2.0
NOD = 2%ND
NOD1 = 3%ND
NZ = ND + 1
Nl = ND - 1

NCD = O
CON1 = 1.0/GAM
CON2 = 1,0 - CON1
DO 20 T = 1sND
XI =1 -1
Z1G = XI#DTH




2V

P{1s1) = AP*SIN (ZIG) + 1.0
DPTH(1,I) = AP*COS (21G)
T(1ls1) = P(1ls1)**¥CON2
RHO(1sI)= P(1+s1)%%xCON1
V(ls1) = 040

DTTH(1ls1) = CON2/RHO(1lsI)*DPTH(1s1)
DVTH(1sI) = 040

DRHOTH(1s1) = CON1/T(1s1)*¥DPTH(1s1)
D2VTH(1sI} = 0,0

D2TTH(1»1) CON2/RHO(1s1)*¥(-CON1/P(1s1)% DPTH(1s1)*DPTH(1s1)
+ 1e0 = P{1s1}))

RETURN

END
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SUBROUTINE SHIFT
DIMENSION FC(80)s NM(2U)s BD(29361s14)sBE(3+36193)9VI(3,361)
1 sART(80053)9P(29361)s RHO(39361)s T(39361), AB(92+10)
2 s XZX{1086) '
DIMENSION DTT(2+361)sDTTH(29361)sDRHOT (25361)sDRHOTH(2s361)
1 DVT(29361)sDVTH{29361)9sW(69361)sWZ(25361)sDPTH(29361)>
1 D2VTH(2s361)s D2TTH(2+361)}
COMMON/E/FCsNM/B/BDsBE
COMMON ARTs ABs XZX
EQUIVALENCE (BE(1)sT)s (BE(1084)sRHO}» (BE(2167)s V)
EQUIVALENCE (BD(1)sP)s (BD( 723)sDPTH) s (BD(1445)sDTT)>»
2(BD(4333)sDRHOTH) s (BD(5U55)»DVT ) s (BD(STTT)sDVTH) s (BD(64599)9D2VTH) »
3 (BD(7221)sW)s (BD(9387)s WZ)
EQUIVALENCE (NM({5)sMPTN) s (NM(4)sMGAM)Ys (NM(3)sMALP )
1 (NM{1)sIM)s (FC(3)sH)s (FC{(7)eHZD2)s (NMU1O)sNV)s (FC(&4)sHO)
2 (FCL1)sTI)s(NM(2)s INDR)s (FC(10)s El)s (NM(8)sNCOU),
3 (FCle)s HMAX)s (NMI6)SMPTS)s (FC(B)sEMIN)s (FC(9)s EMAX)
4 (FC(2)sRKT)Ys (NM(16)sNCD) s (NM(19)sNOD1)s (NM(20)9sNOD)
PRINT PREVIOUS POINT IN PREDICTOR CYCLE
NO SHIFTING TO OCCUR ON PREDICTOR CYCLE
IF(MPTN) 20s10,20
v MPTN = MPTS
29 IF{MGAM) 80s B80s 60
1S CORRECTOR CYCLE COMPLETE
60 IF(E1 - EMIN) 72y 68y 68
68 IF(NCD - 3) 69y 69y 72
CONTINUE ITERATION (INCREMENT ITERATION COUNTER)
69 DO 70 J = 143
NZ = 1083%(J-1) + 1
NZZ = NZ + NOD1 -1
DO 70 I = NZsNZZ+3
70 BE(I+2) = BE(I+1)
E1l = 0.0
NCD = NCD +1
RETURN
TERMINATE CORRECTOR ITERATION
72 MGAM = -1
MPTN = MPTN - 1’
IM NCD
NCD 0
FC(58)y = E1
E1 = 000
DO 74 J= 1414
NZ = 722%{(J-1) + 1
NZZ = NZ + NOD -1
DO 74 1 = NZsNZZs2
T4 BD(I) = BD(I+1)
UPDATE NONINTEGRATED VARIABLES ABOVE
UPDATE INTEGRATED VARIABLES BELOW
DO 76 J = 1.3
NZ = 1083%(J-1) + 1
NZZ = NZ + NOD1 -1
DO 76 I = NZyNZZ+3

76 BE(I) = BE(I+1)
RETURN
80 MGAM = +1
Tl =TI + H
RETURN
END
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SUBRCUTINE TDIR

DIMENSION FC(80)s NM(2V)s BD(29361914)9sBE(3936193)sV(3s361)

THIS ROUTINE COMPUTES THE PARTIAL DERIVATIVES WITH RESPECT TO T
1 sART(800+3)sP{2+361)s RHO(39361)s T(3s361)s AB(92+10) s X(4)
2 s XZX(11086) '

DIMENSION DTT(2+361)sDTTH(29361)sDRHOT (293611 sDRHOTH(29361) >
1 OVT(29361)sDVTHI(29s361)sW(69361)sW2(29361)sDPTH(29361)
1 D2VTH(2+361)s D2TTH(25361)

COMMON/E/FCsNM/B/BDsBE
COMMON ARTs ABs XZX

EQUIVALENCE (BE(1)sT)s (BE(1084),RHO)s (BE(2167)s V)

EQUIVALENCE (BD(1)sP)s (BD( 723)sDPTH)s (BD{1445)sDTT) s
1 (BD(2167)sDTTH)»(BD(2889)9sD2TTH)y (BD(3611)sDRHOT) s
2(BD(4333)sDRHOTH) 9 (BD(5US55) sDVT ) s(BD(5777)sDVTH) s (BD(6499) sD2VTH) »
3 (BD(7221)sW)s (BD(9387)y WZ)

EQUIVALENCE (FC(32)s XL)s(FC(34)y XJ)s (FC(33)s RED)S
1 (FCl4l)s VZ)o (FC(42)s FGAM)s (FC(36)s GAM)s (FC(55)s X)
29 (FC(64)9BB) s (FC(65)9BC)s (FC(O66)3BLZ)s (FC(62)9SIP)s (FCI63)9SIP2)

3 s (FC(74)s XLF)s {(FC(75)s XLO}
4 »(NM(14)s ND)s (NM(4)» MGAM) 4 (NM(9)s MP) +(FC(62)s SIP)
5 »(FCl40)s DEL2V) s (FC(80)s DEL1V)
6 »(FC(78)sDRAGF) s {FC(79)sDRAGO)
IF(MGAM) 10s 10y 12
J =1
KZ = 3
KZ2= 5
K =1
GO TO 15
J =2
KZ = 4
KZ2= 6
K =3
CONTINUE
BA=VZ*X(2)
BM=VZ*X(3)
THE DERIVATIVE OR RHO WITH RESPECT TO T - THE CONTINUITY EQUATION

THE MOMENTUM EQe. - THE ENERGY EQUATION

DO 40 I = 1s ND
ABBE = FGAM*(XLOX*W(KZ2s1) + XLF*W(KZsI))
DRHOT(JsI) = —RHO(KsI)*¥(DVTH(JsI) + X{1)) - VIKsI)*DRHOTH(JsI
1)- BA + ABBE
DVT(JsI) = (~(RHO(KsI)*¥DVTH{JsI) + ABBE)I*V(Ksl)— OPTH{(Js1)/GAM

1+BZ*¥D2VTH(Js 1)) /RHO(K 1)

DTT(JsI) = =VIKsI)*¥DTTH(JsI) =BM + ((1le ~GAMIHP(Js1)*(DVTH(J»
1 I)+X(1)) +BCHD2TTH(J»1)+ BZH*¥SIP2*(DVTH(Js ) ¥%2+ X{1)*(X{1)-DVTHI(
2 Jsl))) + FGAM¥WZ (JsI))/RHOI(KSI) ]

IF(DRAGF+DRAGO +LTe 14E-20) GO TO 40
DVT(JsI)=DVTI(Js1)-(DRAGF+DRAGO)¥ABSIV(KsI))*VIKsI)
DTT(JsI)=DTTUJs1)+SIP2¥(DRAGF* (VIKs [ ) #¥24VFZ%%2 ) %%] 45
1 +DRAGO* (VK [ ) ¥%24+VOZ%%2)%%]45)

CONTINUE

RETURN
END
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SUBROUTINE THPRED
EMPLOYING THE RESULTS OF THE INTEGRATION THIS ROQUTINE ATTEMPTS TO
COMPUTE THE THETA DERIVATIVES OF THE N+1 ANNULUS
DIMENSION FC(80)s NM(2U)s BD(29361914)9BE(3+36193)sVI(35361)
sART(8U093) sP(29361)s RHO(39361)s T(39361) »AAA(92+10)
y AA(362)s AB(362)s AC(362)
DIMENSION DTT(2s361)sDTTH(29361) syDRHOT (2+361)sDRHOTH(29361)
DVT(29361)sDVTH(29361)sW{69361)9WZ(29361)9sDPTH(29361)
1 D2VTH(29361)s D2TTH(29361)
COMMON/E/FCsNM/B/BDsBE
COMMON ARTs AAA, AAs ABs AC
EQUIVALENCE (BE(1)sT)s (BE{1084)sRHO)s (BE(2167)s V)
EQUIVALENCE (BD(1)sP)s (BD( 723)sDPTH) s (BD(1445)sDTT )
1 (8D(2167)sDTTH)» (3D(2889)sD2zTTH) s (BD(3611)sDRHOT )
2(8D(4333)sDRHOTH) s (BD(5U55)+sDVT) s (BD(5T777)sDVTH) s (BD(H649F)sDZVTH) s
3 (BD(7221)sW)s (BD(9387)y WZ)
3 »(NM(12)s NZ) s (FC(54)sy DTH)s (NM(4)s MGAM)
4 9 (NMC14)Y9ND)s (NMU15)s N1)s(FC{T70)sD2)s (FCI(T1)sDSQ)

N

—

IF (MGAM) 10510512

1v J =3
GO TO 13
12 J =2
13 AA(1) = RHO(JsN1)
AB(1) = VI(JsNI1)
AC(1) = T(JsN1)

DO 20 I = 2sNZ
AA(T) = RHO(JsI-1)
AB(I) = V(JsI-1)
2V ACIT)Y = T(JsI-1)
DO 25 I = 1Nl
DRHOTH(2s1) = (AA(I+2) —~ AA(I))/D2

DVTH(2s1) = (AB(I1+2) - AB(I))/D2

DTTH(2s1) = (AC(I+2) ~ AC(I))/D2

D2VTH(2s1) = (AB(I+2) — 2.0%AB(I+1) + AB(1))/DSQ
25 D2TTH(2s1) = (AC(I+2) - 2.0%AB({I+1) + AB(1))/DSQ

DVTH(2sND) = DVTH(2s1)
DTTH(2sND)=CTTHI(251)
DRHOTH({2sND) = DRHOTH(2s 1}
D2TTH(2sND) =D2TTHI(2,1)
D2VTH{2sND) = D2VTHI(2s1)
DO 50 T = 1sND
P(2s1) = RHO(JSI)*T(JsI)
5U DPTH(2s]) =DRHOTHI{Z2sI)*¥T(Js[) +DTTH(2s[)*RHO(Js 1)

RETURN
END
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FUNCTION WEDD(A)
THIS FUNCTION EMPLOYS WEDDLES RULE TO EVALUATE THE INTEGRAL(Os2PI)

DIMENSION A(3+361)9B(361)s FC{80)s NM(20)
COMMON /7E/ FCsNM
EQUIVALENCE (NM(15)s N1)s(FC(54)+DTH)

DO 10 I = 1Nl
B(I) = A(lsI}
SUM = 0.0
DO 30 I = 1sN1s5
SUM = SUM + 38%B(1) +75.%¥(B{I+1) + B(I+4)) + 50*¥(B(I+2) +
B(I+3))
WEDD = 5,0%DTH/288,%SUM
RETURN
END
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FUNCTION WEDE(A)
THIS FUNCTION EMPLOYS WEDDLES RULE TO EVALUATE THE INTEGRAL(0s2PI)

DIMENSION A(29361)sB(361)s FC(BO)s NM(20)

COMMON /E/ FCsNM
EQUIVALENCE (NM{15)s N1)s(FC(54)sDTH)

DO 10 I = 1Nl
B(I) = A(lsI)
SUM = 0.0
DO 30 I = 1sN1s5
SUM = SUM + 38e#B(1) +75.%(B(I+1) + B(I+4)) + 50e#(BUI+2) +
B{I+3))
WEDE = 5,0%DTH/288.%SUM
RETURN
END
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FUNCTION WEDS(B)
THIS FUNCTION EMPLOYS WEDDLES RULE TO EVALUATE THE INTEGRAL{(O»s<PI)
DIMENSION B(361)s FC(80)s NM(20)

COMMON /E/ FCsNM
EQUIVALENCE (NM(15)s N1)s(FC{54),DTH)

SUM = 0.0
DO 30 I = 1sN1s5
SUM = SUM + 384%B(I) +75.%(B(I+1) + B(I+4)) + 50*(B(I+2) +
B(I+3))

WEDS = 5,U*DTH/288.%SUM

RETURN

END
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SUBROUTINE ZDIR

DIMENSION A(8)s C(3)s X{4)s FC(80)s NM(20)

COMMON /E/ FCs» NM

EQUIVALENCE (FC(36)s GAM)s (FC(43)s A)s (FC(H1)>
(FC(B55)s X) » (FCl4l)s VLI

X(L)=(C{2)-A(5)#C(1)/A(2)=-A(6)*C(3)/A(8))
/ALY -A(B)*¥A(1)/A(2)-A(6)*¥A(T)/A(8))

X(2)=(C(1)-A(1)%X(1))/A(2)

X(3)y=(C(3)-A(T7)%#X(1))/A(8)

RETURN
END

Co




SAMPLE CASE

Figure D-5 shows the input cards required to run the bipropellant
combustion instability program with droplet drag. Figure D-6 shows the
output obtained from the sample input. The entire printout has not been
Included. However, the initial conditions are listed along with several
successive integration steps as well as the last step (t'=9.5) for this case.
The pressure summary is also printed on the last page. The AP plot, high
pressure node plot and the velocity wave plots have not been included for
this case, however, a complete description of the plots and the subroutines

that generate the plots may be found in Reference 2.
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FIGURE 2a EFFECT OF THE VISCOUS DISSIPATION PARAMETER, f ,ON THE
STEEPNESS OfF THE DIMENSIONLESS GAS VELOCITY PROFILE.
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FIGURE 2b. EFFECT OF THE VISCOUS DISSIPATION PARAMETER, % ON THE
DIMENSIONLESS GAS VELOCITY DERIVATIVE PROFILE.
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AXIAL LOCATION IN CHAMBER , X

FIG.6. STABILITY MAP : MONOPROPELLANT
VS. BIPROPELLANT MODEL COMPARISON
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a) Axial Position of Annulus, x, = 0.02 in.
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b) Axial Position of Annulus, x, = 0.05 in.
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FIGURE 7. TIME RESPONSE OF SYSTEM TO VARIOUS INITIAL DISTURBANCES
CLOSE TO THE THRESHOLD DISTURBANCE LEVEL.
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